DOI QR코드

DOI QR Code

금왕단층의 내부구조 및 단층발달사

Internal Structure and Movement History of the Keumwang Fault

  • 김만재 (강원대학교 지질.지구물리학부 지질학전공) ;
  • 이희권 (강원대학교 지질.지구물리학부 지질학전공)
  • Kim, Man-Jae (Program of Geology, Division of Geology & Geophysics, Kangwon National University) ;
  • Lee, Hee-Kwon (Program of Geology, Division of Geology & Geophysics, Kangwon National University)
  • 투고 : 2016.08.19
  • 심사 : 2016.09.21
  • 발행 : 2016.09.30

초록

금왕단층(Keumwang fault)을 따라 실시한 자세한 지질조사를 통해 쥐라기 후기 및 백악기 초기에 발생한 연성 전단작용 이후에 취성단층 특징을 보이는 재활동이 여러 번 일어났음이 밝혀졌다. 금왕단층은 단층비지로 이루어진 약 10~50 m 폭의 단층핵과 이를 둘러싸고 있는 약 30~100 m 폭의 단층손상대로 이루어져 있다. 연구지역 내 선캠브리아 누대 편마암과 쥐라기 화강암 내에서는 서로 다른 변형환경, 변형시기, 변형기작에 의해 구별되는 최소 6단계의 단층운동이 관찰된다. 첫 번째 단계의 전단운동은 쥐라기 후기 및 백악기 초기에 일어났으며, 좌수향 연성 전단에 의해 압쇄암 계열이 금왕전단대를 따라 형성되었다. 두 번째 단계에서는 주로 취성변형 환경에서 금왕단층을 따라 파쇄암 계열이 압쇄암 계열 위에 중첩되었다. 모암에서 초파쇄암으로 가까워질수록 반상변정의 원마도와 기질의 함량이 증가한 것은 단층의 중심으로 갈수록 파쇄유동이 증가한 것을 지시한다. 세 번째 단계에서는 두 번째 단계에 형성된 파쇄암대에 단층비지대가 중첩되었으며, 좌수향 주향이동 운동에 의해 단층을 따라 퇴적 분지(음성, 풍암분지)들이 형성되었다. 단층비지에 떠있는 파쇄암 잔유물들은 취성변형 환경에서 금왕단층이 여러 번 재활동 했음을 지시한다. 네 번째 단계에서는 금왕단층이 재활동하여 퇴적 분지 내에 안행상의 습곡, 절리 및 단층 등이 형성되었다. 대부분의 전단변형이 엽리 및 전단면을 따라 집중된 반면, 퇴적 분지 내 이암에서는 전반적으로 변형이 단층손상대에 분산된 양상을 보인다. 네 번째 단계 동안 세립의 안산암이 관입을 하였다. 다섯 번째 단계에서는 안산암에 우수향 주향이동 단층운동을 지시하는 전단면과 전단띠가 발달하였다. 단층비지의 ESR(Electron Spin Resonance) 연대 자료에 의하면, 여섯 번째 단계에서는 활동기에 단층운동이 집중적으로 일어나고 휴지기에는 일어나지 않았으며, 주향방향을 따라 단층운동이 이동하는 경향을 보여준다.

Detailed mapping along the Keumwang fault reveals a complex history of multiple brittle reactivations following late Jurassic and early Cretaceous ductile shearing. The fault core consists of a 10~50 m thick fault gouge layer bounded by a 30~100 m thick damaged zone. The Pre-cambrian gneiss and Jurassic granite underwent at least six distinct stages of fault movements based on deformation environment, time and mechanism. Each stage characterized by fault kinematics and dynamics at different deformation environment. Stage 1 generated mylonite series along the Keumwang shear zone by sinistral ductile shearing during late Jurassic and early Cretaceous. Stage 2 was a mostly brittle event generating cataclasite series superimposed on the mylonite series of the Keumwang shear zone. The roundness of pophyroclastes and the amount of matrix increase from host rocks to ultracataclasite indicating stronger cataclastic flow toward the fault core. At stage 3, fault gouge layer superimposed on the cataclasite generated during stage 2 and the sedimentary basins (Umsung and Pungam) formed along the fault by sinistral strike-slip movement. Fragments of older cataclasite suspended in the fault gouge suggest extensive reworking of fault rocks at brittle deformation environments. At stage 4, systematic en-echelon folds, joints and faults were formed in the sedimentary basins by sinistral strike-slip reactivation of the Keumwang fault. Most of the shearing is accommodated by slip along foliations and on discrete shear surfaces, while shear deformation tends to be relatively uniformly distributed within the fault damage zone developed in the mudrocks in the sedimentary basins. Fine-grained andesitic rocks intruded during stage 4. Stage 5 dextral strike-slip activity produced shear planes and bands in the andesitic rocks. ESR(Electron Spin Resonance) dates of fault gouge show temporal clustering within active period and migrating along the strike of the Keumwang fault during the stage 6 at the Quaternary period.

키워드

참고문헌

  1. Bae, H.K. and Lee, H.K., 2014, Space-time patterns of fault activity of the Keumwang Fault developed in the Jincheon-Eumseong-gun, Chungcheong-buk-do. Journal of the Geological Society of Korea. 50, 735-752 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2014.50.6.735
  2. Berthe, D., Choukroune, P., and Jegouzo, P., 1979, Orthogneiss, Mylonite and non-coaxial deformation of granites: the example of the south America shear zone. J. Struct. Geol. 1, 31-42. https://doi.org/10.1016/0191-8141(79)90019-1
  3. Cheong, D.K. and Kim, K.H., 1999, Basin evolution and provenance of sediments of the Cretaceous Poongam sedimentary Basin. Journal of the Petrological Society of Korea, 7, 28-34 (in Korean with English abstract).
  4. Cheong, S.W., Kim, J.H., and Choi, Y.S., 1999, The pencil structures of Cretaceous sedimentary rocks in the northern part of the Eumseong basin, Korea. Journal of Korean Earth Science Society, 20, 497-504 (in Korean with English abstract).
  5. Chester, F.M. and Logan, J.M., 1986, Implication for mechanical properties of brittle faults from observations of the Punchbowl fault zone. California. Pure and Applied Geophysics, 124, 79-106. https://doi.org/10.1007/BF00875720
  6. Chester, F.M. and Logan, J.M., 1987, Composite planar fabric of gouge from the Punchbowl fault, California. Journal of Structural Geology, 9, 621-634. https://doi.org/10.1016/0191-8141(87)90147-7
  7. Choi, P.Y. and Choi, Y.S., 2007, Stress Model of the Opening of the Cretaceous Eumseong Basin. Korea Institute of Geoscience and Mineral Resources bulletin, 11, 3-16.
  8. Choi, S.J., Kim, B.C., Chun, H.Y., and Kim, Y.B., 1995, Charophytes from the Chopyeong Formation (Creataceous) of the Eumsung Basin, Korea. Journal of the Geological Society of Korea. 31, 523-528 (in Korean with English abstract).
  9. Choi, Y.S., 1996, Structural Evolution of the Cretaceous Eumseong Basin, Korea. Ph.D. thesis, Seoul National University, Seoul, 158p (in Korean with English abstract).
  10. Evans, J.P., 1988, Deformation mechanism in granitic rocks at shallow crustal levels. Journal of Structural Geology, 10, 437-443. https://doi.org/10.1016/0191-8141(88)90031-4
  11. Fossen, H., 2010, Structural Geology. Cambridge Unversity Press, Cambridge U.K., 157, 286p
  12. Fossen, H., Schultz, R., Shipton, Z., and Mair, K., 2007, Deformation bands in sandstone-a review. Journal of the Geological society, London, 164, 755-769. https://doi.org/10.1144/0016-76492006-036
  13. Hong, N.R., 2013, Structural features and movement history of the Keumwang Fault at Hongcheon-gun, Kangwon-do, Korea. M.S. thesis, Kangwon National University, Chuncheon, 17-32, 71-73p (in Korean with English abstract).
  14. Hong, N.R. and Lee, H.K., 2012, Structural features and ESR dating of the Keumwang fault at Eumseong-gun, Chungcheongbuk-do. Journal of the Geological Society of Korea, 48, 473-489 (in Korean with English abstract).
  15. Hubbard, M.S. and Wang, H., 1999, Temperature variability during shear deformation: An interpretation of microstructure along the central Norumbega fault zone, Marine. Geological Society of America Special Paper, 331, 25-40.
  16. Ingersoll, R.V., 1988, Tectonics of sedimentary basins. Bulletin of Geological Soiety of America, 100, 1704-1719. https://doi.org/10.1130/0016-7606(1988)100<1704:TOSB>2.3.CO;2
  17. Jang, B.G. and Lee, H.K., 2012, Structural features of fault rocks developed in the Keumwang Fault at Hakgok-ri, Hoengseong-gun, Ganwon-do. Journal of the Geological Society of Korea, 48, 11-26 (in Korean with English abstract).
  18. Kang, P.C and Jin, M.S., 1972, Geological report of the Pungam sheet(1:50,000). Geological Survey of Korea, 14p (in Korean with English abstract).
  19. Kee, W.E., Kim, H.C., Kim, B.C., Choi, S.J., Park, S.I, and Hwang, S.K, 2010, Geological report of the Seoraksan sheet(1:50,000), Korea Institute of Geoscience and Mineral Resources, 58p (in Korean with English abstract).
  20. Kim, J.H., Hong, S.H., and Hwang, S.K., 1982, Geological report of the Shinhung sheet(1:50,000), Korea Institute of Energy and Resources, 27p (in Korean with English abstract).
  21. Kim, K.H. and Cheong, D.K., 1999, Sedimentary Facies of the Creataceous Poongam Sedementary Basin in Hongcheon Area, Kangwon-do, Korea. Journal of the Geological Society of Korea, 35, 279-296.
  22. Kim, Y.S., Peacock, D.C.P., and Sanderson, D.J., 2004, Fault damage zones. Journal of Structural Geology, 26, 503-517. https://doi.org/10.1016/j.jsg.2003.08.002
  23. Kim, Y.S. and Sanderson, J.J., 2008, Earthquake and fault propagation, displacement and damage zones. Structural Geology: New Research, 1, 99-117.
  24. Lee, D.W., Kim, J.S., Kil, Y.W., Kim, Y.S., Yun, S.H., Park, D.K., Kim, W., Woo, K.S., Rhee, C.W., Kim, J.K., Yoon, S.O., Paik, I.S., Kim, W.S., Kim, K.H., and You, B.H., 2006, Natural Hazards and Disasters. Sigmapress, Seoul, 522p.
  25. Lee, H.K., 1986, Structural Analysis of Gon-ju Pull-apart basin, Korea. M.S. thesis, Seoul National University, Seoul, 80p (in Korean with English abstract).
  26. Lee, H.K., 1998, Structural analysis of the Cretaceous Pungam Basin. Journal of the Geological Society of Korea, 34, 122-136 (in Korean with English abstract).
  27. Lee, H.K., 2010, Structural features of the Keumwang fault zone at Sangnam-myon, Inje-gun, Gangwon-do. Journal of the Geological Society of Korea, 46, 561-576 (in Korean with English abstract).
  28. Lee, H.K. and Kim, H.S., 2005, Comparison of structural features of the fault zone developed at different protoliths: crystalline rocks and mudrocks. Journal of Structural Geology, 27, 2099-2112. https://doi.org/10.1016/j.jsg.2005.06.012
  29. Lee, H.K. and Kim, J.Y., 2011, Microstructural features within the fault rocks in the Keumwang fault zone at Sangsam-myon, Inje-gun, Gangwon-do. Journal of the Geological Society of Korea, 47, 395-409 (in Korean with English abstract).
  30. Lee, H.K. and Lee, J.K., 2011, Structural features across a fault zone of the Baehuryeng fault at Chuncheon, Korea. Journal of the Geological Society of Korea, 47, 379-394 (in Korean with English abstract).
  31. Lee, H.K. and Schwarcz, H.P., 1996, Electron spin resonance plateau dating of periodicity of activity on the San Gabriel fault zone, Southern California. Journal of Geological Society of America Bulletin, 108, 735-746. https://doi.org/10.1130/0016-7606(1996)108<0735:ESRPDO>2.3.CO;2
  32. Lee, H.K. and Schwarcz, H.P., 2001, ESR dating of the subsidiary faults in the Yangsan fault system, Korea. Journal of Quaternary Science Review, 20, 999-1003. https://doi.org/10.1016/S0277-3791(00)00055-X
  33. Lee, H.K. and Yang, J.S., 2005, ESR dating of the Ilkwang fault. Journal of the Geological Society of Korea, 41, 369-384 (in Korean with English abstract).
  34. Lee, H.K. and Yang, J.S., 2007, ESR dating the Eupchon fault, South Korea. Journal of Quaternary Geochronology, 2, 392-397. https://doi.org/10.1016/j.quageo.2006.04.009
  35. Lee, J.Y., 1990, Tectonic movement of the Cretaceous Gonju Basin. Ph.D. thesis, Seoul National University, Seoul, 219p (in Korean with English abstract).
  36. Logan, J.M., Friedman, M., Higgs, N.G., Dengo, C., and Shimamoto, T., 1979, 'Experimental studies of simulated gouge and their application to studies of natural fault zone', in Proc. Conf. VIII, Analysis of actual fault zone in bedrock. U.S. Geol. Survey Open File Rep., 79-1239, 268-275.
  37. Park, J.R. and Lee, H.K., 2012, Internal Structure and microstructural features of Keumwang fault zone at Jwaun-ri, Hongcheon-gun, Gangwon-do. Journal of the Geological Society of Korea, 48, 27-47 (in Korean with English abstract).
  38. Passchier, C.W. and Trouw, R.A.J., 1996, Microtectonics. Springer-Verlag Berlin Helidelberg, Germany, 289p.
  39. Ramsay, J.G., 1967, Folding and Fracturing of rocks. McGraw-Hill, New York, 586p.
  40. Reading, H.G., 1980, Characteristics and recognition of strike-slip fault systems. In: Ballance, P.F. and Reading, H.G. (eds.), Sedimentation in Oblique-Slip Mobile Zones. International Association of Sedimentologists, Special Publication 4, 7-26.
  41. Rutter, E.H., Maddock, R.H., Hall, S.H., and White, S.H., 1986, Comparative Microstructures of Natural and Experimentally Produced Clay-Bearing Fault Gouge. Birkhauser Verlag, Basel, 124.
  42. Ryang, W.H., 2013, Characteristics of strike-slip basin formation and sedimentary fills and the Cretaceous small basins of the Korean Peninsula. Journal of the Geological Society of Korea. 49, 31-45 (in Korean with English abstract).
  43. Schulz, S.E. and Evans, J.P., 2000, Mesoscopic structure of the Punchbowl Fault, Southern California and the geologic and geophysical structure of active strike-slip faults. Journal of Structural Geology, 22, 913-930. https://doi.org/10.1016/S0191-8141(00)00019-5
  44. Sibson, R.H., 1977, Fault rocks and fault mechanisms. Journal of Geological Society of London, 133, 191-213. https://doi.org/10.1144/gsjgs.133.3.0191
  45. Sieh, K.E., Stuiver, M. and Brillinger, D., 1989, Amore precise chronology of earthquakes produced by the San Andreas fault in Southern California. Journal of Geophysical Research, 94, 603-623. https://doi.org/10.1029/JB094iB01p00603
  46. Tullis, J. and Yund, R.A., 1987, Transition from cataclastic flow to dislocation creep of feldspars: mechanisms and microstructures. Geology, 15, 606-609. https://doi.org/10.1130/0091-7613(1987)15<606:TFCFTD>2.0.CO;2
  47. Wang, C. and Ludman, A., 2002, Evidence for post-Acadian through Alleghanian defromation in eastern Marine: multiple brittle reactivation of the Norumbega Fault system. Atlantic geology, 38, 37-52.
  48. Watts, M.J. and Williams, G.D., 1979, Fault rocks as indicators of progressive shear deformation in the Guingamp region, Brittany. Journal of Structural Geology, 1, 323-332. https://doi.org/10.1016/0191-8141(79)90007-5
  49. Woodcock, N.H. and Schubert, C., 1994, Continental Strike-Slip Tectonics. In Hankcock, P.L.(eds.) Continental Deformation, Pergamon Press. Oxford 251-263.
  50. Yang, J.S and Lee, H.K., 2014, Quaternary Fault Activity of the Yangsan Fault Zone in the Samnam-myeon, Ulju-gun, Ulsan, Korea, Economic and Environmental Geology, 47, 17-27 (in Korean with English abstract). https://doi.org/10.9719/EEG.2014.47.1.17

피인용 문헌

  1. Quaternary activity patterns of the Keumwang Fault in the Wonju-si area, Gangwon-do vol.53, pp.1, 2017, https://doi.org/10.14770/jgsk.2017.53.1.79
  2. Editorial : Neotectonic and Magma Evolution in the Korean Peninsula and Its Vicinity vol.25, pp.3, 2016, https://doi.org/10.7854/JPSK.2016.25.3.165