DOI QR코드

DOI QR Code

양산-울산 단층계와 후타가와-히나구 단층계의 비교를 통한 지진발생특성 연구

Research on Earthquake Occurrence Characteristics Through the Comparison of the Yangsan-ulsan Fault System and the Futagawa-Hinagu Fault System

  • 이진현 (부경대학교 지구환경과학과) ;
  • 권세현 (부경대학교 지구환경과학과) ;
  • 김영석 (부경대학교 지구환경과학과)
  • Lee, Jinhyun (Department of Earth & Environmental Sciences, Environmental and Marine Sciences and Technology, Pukyong National University) ;
  • Gwon, Sehyeon (Department of Earth & Environmental Sciences, Environmental and Marine Sciences and Technology, Pukyong National University) ;
  • Kim, Young-Seog (Department of Earth & Environmental Sciences, Environmental and Marine Sciences and Technology, Pukyong National University)
  • 투고 : 2016.08.14
  • 심사 : 2016.09.02
  • 발행 : 2016.09.30

초록

현생 응력장 하에서 주향이동단층계의 기하적인 형태는 단층의 재활 및 이에 수반된 지진의 전파와 지표파괴의 특성을 좌우하는 중요한 요인이다. 2016년 4월에 발생한 구마모토지진은 동-서 방향으로 작용하는 최대수평주응력 하에서 북북동 방향의 히나구 단층이 동북동 내지 북동방향의 후타가와 단층에 기하학적으로 ${\lambda}$형태를 이루며 접하는 후타가와-히나구 단층대의 우수향 재활에 의한 것으로 해석된다. 히나구 단층의 북동측 끝부분에서 구마모토 지진의 전진($M_w$ 6.1)이 발생한 이후, 본진($M_w$ 7.1)이 두 단층의 연결부에서 발생하였다. 본진에 연이어 발생한 여진은 후타가와 단층을 따라 북동방향으로 전파되어 아소산 지역에서 종결된 특징을 보인다. 구마모토 지진을 유발시킨 단층들이 이루는 기하적인 형태는 한반도 남동부지역에 발달하는 대표적인 대규모 활성단층으로 인식되고 있는 양산-울산 단층계와 매우 흡사하고 변형율이 차이가 난다. 양산-울산 단층계을 따라 발달하는 제4기 단층들의 연대분포는 양산단층의 북쪽 분절과 울산단층 일대에서 발달하는 제4기 단층들이 양산단층의 남쪽분절에 발달하는 제4기 단층들보다 상대적으로 더 젊은 특징을 보여주고 있다. 이러한 제4기 단층의 연대분포는 쿨룸 응력 모델링을 이용한 기존 연구결과와도 잘 일치한다. 따라서 현생응력조건 하에서 양산-울산단층계 일대의 지진 활성도는 양산단층의 중부 및 북쪽 분절과 울산단층에서 상대적으로 활발할 것으로 해석된다. 따라서 이 지역에 대한 면밀한 지진재해와 고지진학적 연구가 수행되어야 할 것으로 판단된다.

The understanding of geometric complexity of strike-slip Fault system can be an important factor to control fault reactivation and surface rupture propagation under the regional stress regime. The Kumamoto earthquake was caused by dextral reactivation of the Futagawa-Hinagu Fault system under the E-W maximum horizontal principal stress. The earthquakes are a set of earthquakes, including a foreshock earthquake with a magnitude 6.2 at the northern tip of the Hinagu Fault on April 14, 2016 and a magnitude 7.0 mainshock which generated at the intersection of the two faults on April 16, 2016. The hypocenters of the main shock and aftershocks have moved toward NE direction along the Futagawa Fault and terminated at Mt. Aso area. The intersection of the two faults has a similar configuration of ${\lambda}$-fault. The geometries and kinematics, of these faults were comparable to the Yansan-Ulsan Fault system in SE Korea. But slip rate is little different. The results of age dating show that the Quaternary faults distributed along the northern segment of the Yangsan Fault and the Ulsan Fault are younger than those along the southern segment of the Yansan Fault. This result is well consistent with the previous study with Column stress model. Thus, the seismic activity along the middle and northern segment of the Yangsan Fault and the Ulsan Fault might be relatively active compared with that of the southern segment of the Yangsan Fault. Therefore, more detailed seismic hazard and paleoseismic studies should be carried out in this area.

키워드

참고문헌

  1. Chae, B.-G. and Chang, T.-W., 1994, Movement History of Yangsan Fault and its Related Fractures at Chongha-Yongdok Area, Korea. Journal of the Geological Society of Korea, 30, 379-394 (in Korean with English abstract).
  2. Chang, C.J. and Chang, T.-w., 1998, Movement history of the Yangsan Fault based on paleostress analysis. The Journal of the Engineering Geology, 8, 35-49 (in Korean with English abstract).
  3. Chang, K.-H., Woo, B.-G., Lee, J.-H. Park, S.-O., and Yao, A., 1990, Cretaceous and Early Cenozoic stratigraphy and history of eastern Kyongsang Basins Korea. Journal of the Geological Society of Korea, 26, 471-487 (in Korean with English abstract).
  4. Choi, H.I., Oh, J.H., Shin, S.C., and Yang, M.Y., 1980, Geology and geochemistry of the Gyeongsang strata in Ulsan area. Korea Institute of Energy and Resources Bulletin, 20, 33 p.
  5. Choi, J.-H., Kim, J.W., Murray, A.S., Hong, D.G., Chang, H.W., and Cheong, C.-S., 2009, OSL dating of marine terrace sediments on the southeastern coast of Korea with implications for Quaternary tectonics, Quaternary International, 199, 3-14. https://doi.org/10.1016/j.quaint.2008.07.009
  6. Choi, J.-H., Yang, S.-J., and Kim, Y.-S., 2009, Fault zone classification and structural characteristics of the southern Yangsan fault in the Sangcheon-ri area, SE Korea. Journal of the Geological Society of Korea, 45, 9-28 (in Korean with English abstract).
  7. Choi, J.-H., Yang, S.-J., Han, S.-R., and Kim, Y.-S., 2015, Fault zone evolution during Cenozoic tectonic inversion in SE Korea. Journal of Asian Earth Sciences, 98, 157-177.
  8. Choi, P.-Y., Ryoo, C.-R., Kwon, S.-K., Chwae, U., Hwang, J.-H., Lee, S.R., and Lee, B.-J., 2002, Fault tectonic analysis of the Pohang-Ulsan area, SE Korea: Implications for active tectonics, Journal of the Geological Society of Korea, 38, 33-50 (in Korean with English abstract).
  9. Choi, P.-Y., 2005. Geometric Analysis of the Quaternary Eupchon Fault: an Interpretation of Trench Sections. Journal of the Geological Society of Korea, 41, 129-140 (in Korean with English abstract).
  10. Choi, P.-Y., Lee, H.-K., and Chwae, U., 2007, Tectonic 'aggression and retreat' in the Quaternary tectonics of southern Korea, Journal of the Geological Society of Korea, 43, 415-425 (in Korean with English abstract).
  11. Choi, S.-J., Jeon, J.-S., Song, K.-Y., Kim, H.-C., Kim, Y.-H., Choi, P.-Y., Chwae, U.C., Han, J.-G., Ryoo, C.-R., Sun, C.-G., Jeon, M.S., Kim, G.-Y., Kim, Y.-B., Lee, H.-J., Shin, J.S., Lee, Y.-S., and Kee, W.-S., 2012, Active faults and seismic hazard map. NEMA, Seoul, 882 p.
  12. Choi, S.-J., Jeon, J.-S., Choi, J.-H., Kim, B., Ryoo, C.-R., Hong, D.-G., and Chwae, U., 2014, Estimation of possible maximum earthquake magnitudes of Quaternary faults in the southern Korean Peninsula. Quaternary International, 344, 53-63. https://doi.org/10.1016/j.quaint.2014.05.052
  13. Choi, W.-H., 2003, Neotectonics of the Gyeongju-Ulsan area in the southeastern part of Korean peninsula. Seoul National University, 205.
  14. DPRI, Kyoto University, 2016, http://wwwcatfish.dpri.kyotou.ac.jp/-goto/eq/20160414/report_en.html (April 4, 2016)
  15. Du, Y. and Aydin, A., 1995, Shear fracture patterns and connectivity at geometric complexities along strike-slip faults. Journal of Geophygical Research, 100, 18093-18102. https://doi.org/10.1029/95JB01574
  16. G-EVER, 2016, http://g-ever.org/updates/?p=214 (April 15, 2016).
  17. GNS Science 2013. The Most Recent Aftershock Map, available at http://www.gns.cri.nz/Home/Our-Science/Natural-Hazards/Recent-Events/Canterbury-quake/Recent-aftershock-map (April 11, 2014).
  18. GSI, 2016, http://www.gsi.go.jp/BOUSAI/H27-kumamotoearthquake-index.html (May 13, 2016).
  19. GSJ, 2016, https://gbank.gsj.jp/geonavi/geonavi.php?lat=32.92678&lon=131.08112&z=10&basemap=Google_Terrain&layers=&ol=activeFaults,KumamotoQuake (August 11, 2016).
  20. Han, S.-R., Park, J.Y., and Kim, Y.-S., 2009, Evolution modeling of the Yangsan-Ulsan fault system with stress changes. Journal of the Geological Society of Korea, 45, 361-377 (in Korean with English abstract).
  21. Hong, T.-K., Lee, J., and Houng, S.E., 2015, Long-term evolution of intraplate seismicity in stress shadows after a megathrust. Physics of the Earth and Planetary Interiors, 245, 59-70. https://doi.org/10.1016/j.pepi.2015.05.009
  22. Ikeda, Y., Chida, N., Nakata, T., Kaneda, H., Tajikara, M., and Takazawa, S., 2001, Active Faults in Urban Area Map [Kumamoto], GSI, Tech. Rep. D.1-No.368 p.
  23. Jin, K. and Kim, Y.-S., 2010, Review and new interpretation for the propagation characteristics associated with the 1999 Chi-Chi earthquake faulting event. Island Arc, 19, 659-675. https://doi.org/10.1111/j.1440-1738.2010.00740.x
  24. Jin, K., Lee, M., Kim, Y.-S., and Choi, J.-H., 2011, Archaeoseismological studies on historical heritage sites in the Gyeongju area, SE Korea. Quaternary International 242, 158-170. https://doi.org/10.1016/j.quaint.2011.03.055
  25. Jun, M. -S. and Jeon, J. S., 2010. Focal mechanism in and around the Korean Peninsula. Jigu-Mulli-wa-Mulli-Tamsa, 13, 198-202 (in Korean with English abstract).
  26. Kee, W.-S., Kim, B.C., Hwang, J.H., Song, K.-Y., and Kihm, Y.-H., 2007, Structural Characteristics of Quaternary reverse faulting on the Eupcheon Fault, SE Korea. Journal of the Geological Society of Korea, 43, 311-333 (in Korean with English abstract).
  27. Kee, W.-S., Kim, Y.-H., Lee, H.-J., Choi, D.-L., Kim, B.-C., Song, K.-Y., Koh, H.-J., Lee, S.R., Gwang, Y.Y., Hwang, S.-H., Park, K.-G., and Sung, N.-H., 2009, South eastern fault variable research and DB Construction, KIGAM, Daejeon, 327 p.
  28. KIGAM, 2014, Report on focal mechanism in 23rd-25th, September, 2014, Earthquake research centre, Korea institute of geoscience and mineral resources, unpublished.
  29. KIGAM, 2016, Report on focal mechanism in 5th, July, 2016, Earthquake research centre, Korea institute of geoscience and mineral resources, unpublished.
  30. Kim, K.Y., Kim, D.H., and Lee, S.Y., 2008, Near-surface geophysical studies in the Ulsan Fault Zone of Korea. Exploration Geophysics, 39, 78-84. https://doi.org/10.1071/EG08008
  31. Kim, S.W., 1973, A study on the Terraces along the southeastern coast (Bangeojin-Pohang) of the Korean Peninsula. Journal of the Geological Society of Korea, 9, 47-88 (in Korean with English abstract).
  32. Kim, Y.-S., Andrews, J.R., and Sanderson, D.J., 2000, Damage zones around strike-slip fault systems and strike-slip fault evolution, Crackington Haven, southwest England. Geosciences Journal, 4, 53-72. https://doi.org/10.1007/BF02910127
  33. Kim, Y.-S., Park, J.Y., Kim, J.H., Shin, H.C., and Sanderson, D.J., 2004, Thrust geometries in unconsolidated Quaternary sediments and evolution of the Eupchon Fault, southeast Korea. The Isand Arc, 13, 403-415.
  34. Kim, Y.-S. and Jin, K.M., 2006, Estimated earthquake magnitude from the Yugye Fault displacement on a trench section in Pohang, SE Korea, Journal of the Geological Society of Korea, 42, 79-94 (in Korean with English abstract).
  35. Kim, Y.-S., Kihm, J.-H., and Jin, K.M., 2011, Interpretation of the rupture history of a low slip-rate active fault by analysis of progressive displacement accumulation: an example from the Quaternary Eupcheon Fault, SE Korea. Journal of the Geological Society, London, 168, 273-288. https://doi.org/10.1144/0016-76492010-088
  36. Kim, Y.-S. and Sanderson, D.J., 2008, Earthquake and fault propagation, displacement and damage zones, Structural Geology: New research (eds. Landowe, S.J., Hammler, G.M.,), Nova science publishers, 99-117.
  37. Kyung, J.B. and Chang, T.W., 2001, The lastest fault movement on the northen Yangsan Fault zone around the Yugye-ri area, southeast Korea. Journal of the Geological society of Korea. 37, 563-577 (in Korean with English abstract).
  38. Kyung, J.B., 2003, Paleoseismology of the Yangsan fault, southeastern part of the Korean peninsula, Annals of Geophysics, 46, 983-996.
  39. Kyung, J.B. and Lee, K.H., 2006, Active fault study of the Yangsan fault system and Ulsan fault system, southeastern part of the Korean Peninsula. Special Volume of the Journal of the Korean Geophysical Society, 9, 219-230 (in Korean with English abstract).
  40. Lee, H.K. and Schwarcz, H.P., 2001, ESR dating of the subsidiary faults in the Yangsan fault system, Korea. Quaternary Science Reviews, 20, 999-1003. https://doi.org/10.1016/S0277-3791(00)00055-X
  41. Lee, H.K. and Yang, J.S., 2003, ESR dating of the Wangsan fault, South Korea. Quaternary Science Reviews 22, 1339-1343. https://doi.org/10.1016/S0277-3791(03)00018-0
  42. Lee, J.H., Rezaei, S., Hong, Y.J., Choi, J.-H., Choi, J.-H., Choi, W.-H., Rhee, K.-W., and Kim, Y.-S., 2015, Quaternary fault analysis through a trench investigation on the northern extension of the Yangsan fault at Dangu-ri, Gyungju-si, Gyeongsangbuk-do. Journal of the Geological Society of Korea. 51, 471-485 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2015.51.5.471
  43. Lee, K.H. and Na, S.H., 1983, A study of microearthquake activity of the Yangsan fault. Journal of the Geological society of Korea, 19, 127-135 (in Korean with English abstract).
  44. Nakata, T. and T. Imaizumi eds., 2002, Digital Active Fault Map of Japan, University of Tokyo Press, 1 DVD and 68 p.
  45. Okada, A., Takemura, K., Watanabe, M., Suzuki, Y., Kyung, J.B., Chae, Y.H., Taniguchi, K., Ishiyama, T., Kawabata, D., Kaneda, H., and Naruse, T., 1999, Trench excavation survey across the Ulsan (active) fault at Kalgokl-ri, Kyongju City, Southeast of Korea. Jour. Geography, 108, 276-288. https://doi.org/10.5026/jgeography.108.276
  46. Okumura, K., 2016, Earthquake Geology of the April 14 and 16, 2016 Kumamoto Earthquakes. Proceeding of the 7th International INQUA Meeting on Paleoseismology, Active Tectonics and Archeoseismology, 191-194.
  47. O'Rourke, T.D., Jeon, S.-S., Toprak, S., Cubrinovski, M., Hughes, M., Ballegooy, S.V., and Bouziou, D, 2014, Earthquake respon of underground pipeline networks in Christchurch, NZ. Earthquake Spectra, 30, 183-204. https://doi.org/10.1193/030413EQS062M
  48. Park, J.-Y., 2004, The structural characteristics of the Tertiary basin in Gyeongju region, Korea. Ms.C. dissertation, Seoul National University, 205p.
  49. Research Group for Active Faults of Japan, 1995, Active Faults of Japan. University of Tokyo Press, 340 p.
  50. Ryoo, C.-R., Lee, B.J., Son, M., Lee, Y.H., Choi, S.-J., and Chwae, W.C., 2002, Quaternary faults in Gaegok-ri, Oedong-eup, Gyeongju, Korea. Journal of the Geological Society of Korea. 38, 309-323 (in Korean with English abstract).
  51. Sibson, R.H., 1989, Earthquake faulting as a structural process. Journal of Structural Geology, 11, 1-14. https://doi.org/10.1016/0191-8141(89)90032-1
  52. Woody, E., Peter, Y., Koji, O., Sam, S., and Takanao, N., 2016, The Kumamoto earthquake investigation: a preliminary report. 87P.
  53. Yang, J.S., 2006, Quaternary fault in southeastern peninsula, Ph.D graduation thesis, Gangwon National University, Chuncheon, 378 p.

피인용 문헌

  1. Editorial : Neotectonic and Magma Evolution in the Korean Peninsula and Its Vicinity vol.25, pp.3, 2016, https://doi.org/10.7854/JPSK.2016.25.3.165