References
- Bengio, Y., and P. Frasconi, 1995. An input output HMM architecture. Advances in neural information processing systems: 427-434.
- Bracken, C., B. Rajagopalan, and E. Zagona, 2014. A hidden markov model combined with climate indices for multidecadal streamflow simulation. Water Resources Research 50(10): 7836-7846. https://doi.org/10.1002/2014WR015567
- Edward, D., and T. McKee, 1997. Characteristics of 20th century drought in united state at multiple time scales. Climatology Report, Colorado State University, Fort Collins.
- Hewitt, C. D., and D. J. Griggs, 2004. Ensembles-based predictions of climate changes and their impacts (ENSEMBLES). Eos 85(52): 566. https://doi.org/10.1029/2004EO520005
- Hughes, J. P., and P. Guttorp, 1994. Incorporating spatial dependence and atmospheric data in a model of precipitation. Journal of applied meteorology 33(12): 1503-1515. https://doi.org/10.1175/1520-0450(1994)033<1503:ISDAAD>2.0.CO;2
- Pai, D. S., L. Sridhar, P. Guhathakurta, and H. R. Hatwar, 2011. District-wide drought climatology of the southwest monsoon season over India based on standardized precipitation index (SPI). Natural hazards 59(3): 1797-1813. https://doi.org/10.1007/s11069-011-9867-8
- Kim, G. S., and H. G. Park, 2010. Estimation of drought index using CART algorithm and satellite data. Journal of the Korean Association of Geographic Information Studies, 13(1): 128-141 (in Korean).
- Kim, T. J., K. Y. Kim, and H. H. Kwon, 2015. Development of multisite spatio-temporal downscaling model for rainfall using GCM mulit model ensemble. Journal of the Korean Society of Civil Engineers, 35(2): 327-340 (in Korean). https://doi.org/10.12652/Ksce.2015.35.2.0327
- Kim, T. J., H. H. Kwon, D. R. Lee, and S. K. Yoon, 2014. Development of stochastic downscaling method for rainfall data using GCM. Journal of Korea Water Resources Association, 47(9): 825-838 (in Korean). https://doi.org/10.3741/JKWRA.2014.47.9.825
- Kwon, H. H., T. J. Kim, S. H. Hwang, and T. W. Kim, 2013a. Development of daily rainfall simulation model based on homogeneous hidden markov chain. Journal of the Korean Society of Civil Engineers, 33(5): 1861-1870 (in Korean). https://doi.org/10.12652/Ksce.2013.33.5.1861
- Kwon, H. H., T. J. Kim, O. K. Kim, and D. R. Lee, 2013b. Development of multi-site rainfall simulation based on homegeneous hidden markov chain model coupled with chow-liu tree Structures. Journal of Korea Water Resources Association, 46(10): 1029-1040 (in Korean). https://doi.org/10.3741/JKWRA.2013.46.10.1029
- Lardet, P., and C. Obled, 1994. Real-time flood forecasting using a stochastic rainfall generator. Journal of Hydrology 162(3): 391-408. https://doi.org/10.1016/0022-1694(94)90238-0
- Mallya, G., S. Tripathi, S. Kirshner, and R. S. Govindaraju, 2012. Probabilistic assessment of drought characteristics using hidden Markov model. Journal of Hydrologic Engineering 18(7): 834-845. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000699
- McKee, T. B., N. J. Doesken, and J. Kleist, 1993. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology 17(22): 179-183.
- McKee, T. B., N. J. Doesken, and J. Kleist, 1995. Drought monitoring with multiple time scales. In Proceedings of the 9th Conference on Applied Climatology: 233-236.
- Meila, M. and M. I. Jordan, 1996. Markov mixtures of experts. Multiple Model Approaches to Modelling and Control: 145-166.
- Molteni, F., R. Buizza, T. N. Palmer, and T. Petroliagis, 1996. The ECMWF ensemble prediction system: methodology and validation. Quarterly journal of the royal meteorological society 122(529): 73-119. https://doi.org/10.1002/qj.49712252905
- Palmer, W. C. 1965. Meteorological drought. Washington, DC, USA: US Department of Commerce, Weather Bureau.
- Posada, D. and T. R. Buckley, 2004. Model selection and model averaging in phylogenetics : advantages of akaike information criterion and bayesian approaches over likelihood ratio tests. Systematic biology 53(5): 793-808. https://doi.org/10.1080/10635150490522304
- Silburn, D. M., and R. D. Connolly, 1995. Distributed parameter hydrology model (ANSWERS) applied to a range of catchment scales using rainfall simulator data I : Infiltration modelling and parameter measurement. Journal of Hydrology 172(1): 87-104. https://doi.org/10.1016/0022-1694(95)02740-G
- Thornthwaite, C. W., and J. R. Mather, 1955. The water budget and its use in irrigation. In Water, The Yearbook of Agriculture. US Department of Agriculture: 346-358.
- Wilhite, D. A., and M. H., Glantzb, 1985. Understanding : the Drought Phenomenon: The Role of Definitions. Water International 10(3): 111-120. https://doi.org/10.1080/02508068508686328
- Willeke, G., J. R. M. Hosking, J. R. Wallis, and N. B. Guttman, 1994. The national drought Atlas. Institute for water resources rep. U.S. Army Corps of Engineers.
- Yoo, J. Y., J. Y. Kim, H. H. Kwon, and T. W. Kim, 2014b. Sensitivity assessment of meteorological drought index using bayesian network. Journal of the Korean Society of Civil Engineers 34(6): 1787-1796 (in Korean). https://doi.org/10.12652/Ksce.2014.34.6.1787
- Yoo, J. Y., H. H. Kwon, T. W. Kim, and S. O. Lee, 2014a. Probabilistic assessment of drought characteristics based on homogeneous hidden markov model. Journal of the Korean Society of Civil Engineers 34(1): 145-153 (in Korean). https://doi.org/10.12652/Ksce.2014.34.1.0145