DOI QR코드

DOI QR Code

Physical and Mechanical Properties of Korean Red Pine Wood from Different Growth Sites and Correlations between Them

생장지역별 소나무재의 물리적·역학적 특성과 상호 상관관계

  • Han, Yeonjung (Department of Forest Products, National Institute of Forest Science) ;
  • Lee, Hyun-Mi (Department of Forest Products, National Institute of Forest Science) ;
  • Eom, Chang-Deuk (Department of Forest Products, National Institute of Forest Science)
  • 한연중 (국립산림과학원 임산공학부) ;
  • 이현미 (국립산림과학원 임산공학부) ;
  • 엄창득 (국립산림과학원 임산공학부)
  • Received : 2016.06.17
  • Accepted : 2016.08.18
  • Published : 2016.09.25

Abstract

Physical and mechanical properties of Korean red pine wood grown in Anmyeon-do, Taean-gun, Chungcheongnam-do and Sogwang-ri, Uljin-gun, Gyeongsangbuk-do, Korea were measured and each relationships between them were analyzed. The ring width and latewood proportion along radial axis in Korean red pine at two-regions were measured by collecting the growth core of stands with age class V and IX. The ring width in Korean red pine at two-regions decreased with increasing cambium age. The average ring widths in age class V and IX in Anmyeon-do and Sogwang-ri were 2.865 mm, 1.705 mm, 4.764 mm, and 2.228 mm, respectively. The ring widths in Anmyeon-do were measured from 23% to 40% smaller than Sogwang-ri. The latewood proportion was negatively related with the ring width of Korean red pine at two-regions. The relationship between physical and mechanical properties of specimens for compressive and bending strength tests were analyzed with simple regression analysis. The relationship between latewood proportion and oven-dry density were positive and statistically significant. The relationship between latewood proportion and mechanical properties was slightly positive and not statistically significant, except the specimens for bending strength test of Anmyeon-do. The relationship between oven-dry density and mechanical properties was positive. It was just statistically significant in the specimens of Sogwang-ri. The compressive and bending strengths of Anmyeon-do and Sogwang-ri were 51.3 MPa, 80.5 MPa, 37.7 MPa, and 63.7 MPa, respectively. The strength difference between two-regions was determined to due to difference of ring width and latewood proportion by age class.

충청북도 태안군 안면도와 경상북도 울진군 소광리 지역 소나무재의 물리적 특성과 역학적 특성을 측정하고, 상호상관관계를 분석하였다. 두 지역의 5영급과 9영급 소나무에서 생장코어를 채취하여 방사방향의 연륜폭과 만재율을 측정하였다. 두 지역 모두에서 연륜폭은 수에서 수피까지 감소하는 경향을 나타냈다. 전체 평균 연륜폭은 안면도 지역에서 5영급과 9영급이 각각 2.865 mm, 1.705 mm이고, 소광리 지역에서 5영급과 9영급이 각각 4.764 mm, 2.228 mm로 안면도 지역의 값이 소광리 지역에 비하여 약 23-40% 정도 작았다. 두 지역 모두 연륜폭이 증가함에 따라 만재율은 감소하는 음의 상관관계를 보였다. 강도측정용 시험편에 대하여 소나무재의 물리적 특성과 역학적 특성의 상관관계를 단순회귀분석으로 분석하였다. 만재율과 전건밀도는 서로 양의 상관관계를 보였으며, 통계적으로 유의하였다. 만재율과 역학적 특성은 안면도 소나무재의 휨강도 시험편을 제외하고, 양의 상관관계를 보였으나 통계적으로 유의하지 않았다. 전건밀도와 역학적 특성은 두 지역 모두 양의 상관관계를 보였으나, 소광리 지역 시험편에서만 통계적으로 유의하였다. 안면도 지역의 소나무재의 평균 압축강도와 휨강도는 각각 51.3 MPa와 80.5 MPa로 소광리 지역의 평균 압축강도와 휨강도 37.7 MPa와 63.7 MPa에 비하여 크게 측정되었다. 두 지역 간의 강도 차이는 생장조건의 차이도 있지만, 영급에 의한 연륜폭과 만재율 등의 차이에 의한 결과로 판단된다.

Keywords

References

  1. Brazier, J.D., Howell, R.S. 1979. The use of a breast-height core for estimating selected whole-tree properties of Sitka spruce. Forestry 52(2): 177-185. https://doi.org/10.1093/forestry/52.2.177
  2. Danborg, F. 1994. Density variation and demarcation of the juvenile wood in Norway spruce. Danish Forest and Landscape Research Institute, Forskningserien 10: 1-78.
  3. Elliott, G.K. 1979. Wood Density in Conifers. Technical Communication No. 8, Commonwealth Forestry Bureau, Oxford, England.
  4. Frimpong-Mensah, K. 1987. Fibre length and basic density variation in the wood Norway spruce (Picea abies L. Karst.) from norther Norway. Communications of the Norwegian Forest Research Institute 40: 1-25.
  5. Fuglem, G., Sabourin, M.J., Lundqvist, S.O. 2003. Influence of spruce wood properties on thermo mechanical pulping - pilot scale, Quebec, Canada, Proc. of International Mechanical Pulping Conference, pp. 75-82.
  6. Garcia-Gonzalez, I., Fonti, P. 2006. Selecting earlywood vessels to maximize their environmental signal. Tree Physiology 26(10): 1289-1296. https://doi.org/10.1093/treephys/26.10.1289
  7. Guiher, J.K. 1965. Effect of rings-per-inch on specific gravity of red oak. Forrest Products Journal 15: 409-411.
  8. Guyette, R.P., Stambaugh, M. 2003. The age and density of ancient and modern oak wood in streams and sediments. IAWA Journal 24(4): 345-353. https://doi.org/10.1163/22941932-90000340
  9. Jaakkola, T., Makinen, H., Saranpaa, P. 2005. Wood density in Norway spruce: changes with thinning intensity and tree age. Canadian Journal of Forest Research 35(7): 1767-1778. https://doi.org/10.1139/x05-118
  10. Jyske, T., Makinen, H., Saranpaa, P. 2008. Wood density within Norway spruce stems. Silva Fennica 42(3): 439-455.
  11. Kim D.-W., Hwang, S.-W., Lee, W.-H. 2014. A study on the mechanical properties of Korean red pine (Geumgangson, Pinus densiflora forma erecta Uyeki). Journal of The Korean Wood Science and Technology 42(1): 58-67. https://doi.org/10.5658/WOOD.2014.42.1.58
  12. Knapic, S., Louzada, J.L., Leal, S., Pereira, H. 2007. Radial variation of wood density components and ring width in cork oak trees. Annals of Forest Science 64(2): 211-218. https://doi.org/10.1051/forest:2006105
  13. Koch, P. 1985. Utilization of hardwoods growing on Southern pine sites. Vol. III. Products and prospective. US Department of Agriculture Forest Service Handbook No. 605. Washington DC, USA.
  14. Koga, S., Zhang, S.Y. 2004. Inter-tree and intra-tree variations in ring width and wood density components in balsam fir (Abies balsamea). Wood Science and Technology 38(2): 149-162. https://doi.org/10.1007/s00226-004-0222-z
  15. Korea Forest Research Institute. 2010. Wood Properties of the Domestic Species. Research Report 10-29. Korea Forest Research Institute, Seoul, Korea.
  16. Korea Forest Research Institute. 2012. Economic Tree Species 1. Red pine. Research Report 59. Korea Forest Research Institute, Seoul, Korea.
  17. Korea Forest Service. 2015. Statistical Yearbook of Forestry 45. Korea Forest Service, Daejeon, Korea.
  18. Korean Standards Association. 2004. Method of compression test for wood. KS F 2206.
  19. Korean Standards Association. 2004. Method of bending test for wood. KS F 2208.
  20. Olesen, P.O. 1977. The variation of the basic density level and tracheid width within the juvenile and mature wood of Norway spruce. Forest Tree Improvement 12: 1-21.
  21. Panshin, A.J., de Zeeuw, C. 1980. Textbook of Wood Technology (4th ed.) McGraw-Hill, New York, USA.
  22. Park, B.-S., Park, J.-H., Han, S.-U. 2006. Variation of material properties of Korean red pine of superior families - tracheid length, microfibril angle, resin canal and specific gravity. Journal of Korea Forestry Energy 25(2): 9-15.
  23. Park, S.-Y., Eom, C.-D., Seo, J.-W. 2015. Seasonal change of cambium activity of pine trees at differenct growth sites. Journal of The Korean Wood Science and Technology 43(4): 411-420. https://doi.org/10.5658/WOOD.2015.43.4.411
  24. Petty, J.A., Macmillan, D.C., Steward, C.M. 1990. Variation of density and growth ring width in stems of Sitka and Norway spruce. Forestry 63(1): 39-49. https://doi.org/10.1093/forestry/63.1.39
  25. Raiskila, S., Saranpaa, P., Fagerstedt, K., Laakso, T., Loija, M., Mahlberg, R., Paajanen, L., Ritschkoff, A.-C. 2006. Growth rate and wood properties of Norway spruce cutting clones on different sites. Silva Fennica 40(2): 247-256.
  26. Saranpaa, P. 1994. Basic density, longitudinal shrinkage and tracheid length of juvenile wood of Picea abies. Scandinavian Journal of Forest Research 9(1): 68-74. https://doi.org/10.1080/02827589409382814
  27. Seo, J.-W., Eom, C.-D., Park, S.-Y. 2014. Study on the variation of inter-annual tracheid length for Korean red pine from Sokwang-ri in Uljin. Journal of The Korean Wood Science and Technology 42(6): 646-652. https://doi.org/10.5658/WOOD.2014.42.6.646
  28. Smith, D.M. 1955. A comparison of two methods for determining the specific gravity of small samples of second growth Douglas-fir. US Forrest Products Laboratory, Report No. 2033, Madison, USA.
  29. Taylor, F.W., Wooten, T.E. 1973. Wood property variation of Mississippi Delta hardwoods. Wood and Fiber Science 5: 2-13.
  30. Tsuchiya, R., Furukawa I. 2009. Radial variation in the size of axial elements in relation to stem increment in Quercus serrata. IAWA Journal 30(1): 15-26. https://doi.org/10.1163/22941932-90000199
  31. Wimmer, R., Downes, G.M. 2003. Temporal variation of the ring width-wood density relationship in Norway spruce grown under two levels of anthropogenic disturbance. IAWA Journal 24(1): 53-61. https://doi.org/10.1163/22941932-90000320
  32. Zhang, S.Y., Zhong, Y. 1992. Structure-property relationship of wood in East-Liaoning oak. Wood Science and Technology 26(2): 139-149. https://doi.org/10.1007/BF00194469
  33. Zhang, S.Y. 1998. Effect of age on the variation, correlations and inheritance of selected wood charicteristics in black spruce (Picea mariana). Wood Science and Technology 32(3): 197-204. https://doi.org/10.1007/BF00704842