DOI QR코드

DOI QR Code

Removal of 5-hydroxymethylfurfural and Furfural in Sugar Hydrolysate by Wood Charcoal Treatment

목탄 처리에 의한 당화액 내 5-hydroxymethylfurfural 및 푸르푸랄 제거

  • Jeong, Hanseob (Division of Wood Chemistry & Microbiology, Department of Forest Products, National Institute of Forest Science) ;
  • Kim, Yong Sik (Division of Wood Chemistry & Microbiology, Department of Forest Products, National Institute of Forest Science) ;
  • Lee, Jaejung (Division of Wood Chemistry & Microbiology, Department of Forest Products, National Institute of Forest Science) ;
  • Chea, Kwang-Seok (Division of Wood Chemistry & Microbiology, Department of Forest Products, National Institute of Forest Science) ;
  • Ahn, Byoung Jun (Division of Wood Chemistry & Microbiology, Department of Forest Products, National Institute of Forest Science) ;
  • Lee, Soo Min (Division of Wood Chemistry & Microbiology, Department of Forest Products, National Institute of Forest Science)
  • 정한섭 (국립산림과학원 임산공학부 화학미생물과) ;
  • 김용식 (국립산림과학원 임산공학부 화학미생물과) ;
  • 이재정 (국립산림과학원 임산공학부 화학미생물과) ;
  • 채광석 (국립산림과학원 임산공학부 화학미생물과) ;
  • 안병준 (국립산림과학원 임산공학부 화학미생물과) ;
  • 이수민 (국립산림과학원 임산공학부 화학미생물과)
  • Received : 2016.08.01
  • Accepted : 2016.08.18
  • Published : 2016.09.25

Abstract

The main aim of this study was to investigate the potential of wood charcoal on removing furan compounds (5-hydroxymethylfurfural (5-HMF), furfural) known as fermentation inhibitors in sugar hydrolysates obtained from supercritical water treatment of lignocellulosic biomass. For this aim, model hydrolysate was prepared, and removal rates of sugars or furan compounds depending on wood charcoal concentration and treatment time were calculated and analyzed in comparison with the case of activated carbon. 0.5, 1, 2, 4, 8, or 12% (w/v) of wood charcoal or activated carbon was loaded into the model hydrolysate, containing glucose, xylose, 5-HMF, and furfural, and treatment was conducted for 1, 3, 6, 12, or 24 h. After treatment, removal rates of 5-HMF and furfural gradually increased as wood charcoal concentration or treatment time increased, and over 95% of 5-HMF and furfural were removed at 8% of wood charcoal concentration and 3 h of treatment time, while the loss of sugars (< 2%) was hardly observed. On the other hand, in the case of activated carbon treatment, removal rates of 5-HMF and furfural were over 95% at mild condition (activated carbon concentration: 8%, treatment time: 1 h), but over 10% of glucose and xylose were removed. Therefore, considering sugar production and further process applied sugar, the wood charcoal treatment of sugar hydrolysate was more effective for removing furan compounds and maintaining the sugar yield.

본 연구에서는 목질계 바이오매스의 초임계수 처리 후 얻어진 당화액 내 발효저해물질인 퓨란계 화합물(5-hydroxymethylfurfural (5-HMF), 푸르푸랄)을 제거하기 위한 목탄 처리의 효과를 구명하고자 하였으며, 이를 위해 유사 당화액을 제조하고 목탄 투입량 및 처리 시간에 따른 당 및 퓨란계 화합물의 제거율을 계산해 활성탄의 경우와 비교분석하였다. 글루코오스, 자일로오스, 5-HMF, 푸르푸랄이 포함된 유사 당화액에 목탄 또는 활성탄을 0.5, 1, 2, 4, 8, 12% (w/v) 농도로 투입하여 1, 3, 6, 12, 24시간 동안 처리하였다. 처리 결과, 목탄 투입량 및 처리 시간이 증가함에 따라 5-HMF 및 푸르푸랄 제거율이 점차 증가하여 목탄 투입량 8%, 처리 시간 3시간 이상에서는 5-HMF, 푸르푸랄 모두 95% 이상 제거되었으며, 동시에 당의 손실(< 2%)은 거의 없었다. 반면, 활성탄을 처리하였을 경우, 목탄보다 온화한 조건(활성탄 투입량: 8%, 처리 시간: 1시간)에서도 5-HMF 및 푸르푸랄 제거율이 95% 이상이었으나, 글루코오스 및 자일로오스 또한 각각 10% 이상이 제거되었다. 따라서, 결론적으로 당 생산 및 추가적인 당 활용 공정을 고려할 때, 목탄을 이용하는 것이 상대적으로 당화액의 퓨란계 화합물을 효과적으로 제거하고 당 수율을 유지하는 방법으로 판단된다.

Keywords

References

  1. da Silva, A.R.G., Ortega, C.E.T., Rong, B.-G. 2016. Techno-economic analysis of different pretreatment processes for lignocellulosic-based bioethanol production. Bioresource Technology 218: 561-570. https://doi.org/10.1016/j.biortech.2016.07.007
  2. Delgenes J, Moletta R, Navarro J. 1996. Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae. Enzyme Microb. Technol. 19(3): 220-225. https://doi.org/10.1016/0141-0229(95)00237-5
  3. Dominguez, J.M., Gong, C.S., Tsao, G.T. 1996. Pretreatment of sugar cane bagasse hemicellulose hydrolysate for xylitol production by yeast. Applied Biochemistry and Biotechnology 57(1): 49-56. https://doi.org/10.1007/BF02941687
  4. Eken-Saracoglu, N., Arslan, Y. 2000. Comparison of different pretreatments in ethanol fermentation using corn cob hemicellulosic hydrolysate with Pichia stipitis and Candida shehatae. Biotechnology Letters 22(10): 855-858. https://doi.org/10.1023/A:1005663313597
  5. Jang, S.-K., Kim, H.-Y., Jeong, H.-S., Kim, J.-Y., Yeo, H., Choi, I.-G. 2016. Effect of ethanol organosolv pretreatment factors on enzymatic digestibility and ethanol organosolv lignin structure from Liriodendron tulipifera in specific combined severity factors. Renewable Energy 87: 599-606. https://doi.org/10.1016/j.renene.2015.10.045
  6. Jeong, H.-S., Jang, S.-K., Kim, H.-Y., Yeo, H., Choi, J.W., Choi, I.-G. 2016. Effect of freeze storage on hemicellulose degradation and enzymatic hydrolysis by dilute-acid pretreatment of Mongolian oak. Fuel 165: 145-151. https://doi.org/10.1016/j.fuel.2015.10.058
  7. Jo, T.-S., Lee, O.-K., Choi, J.-W. 2007. Removal of Heavy Metal Ions Using Wood Charcoal and Bark Charcoal. Journal of the Korean Wood Science and Technology 35(4): 29-37.
  8. Jo, T.-S., Lee, O.-K., Choi, J.-W., Byun, J.-K. 2008. Adsorption of Cadmium Ion by Wood Charcoal Prepared with Red oak (Quercus mongolica). Journal of the Korean Wood Science and Technology 36(3): 93-100.
  9. Kamal, S.M.M., Mohamad, N.L., Abdullah, A.G.L., Abdullah, N. 2011. Detoxification of sago trunk hydrolysate using activated charcoal for xylitol production. Procedia Food Science 1: 908-913. https://doi.org/10.1016/j.profoo.2011.09.137
  10. Kim, H.-Y., Jeong, H.-S., Lee, S.-Y., Choi, J.W., Choi, I.-G. 2015. Pd-catalyst assisted organosolv pretreatment to isolate ethanol organosolv lignin retaining compatible characteristics for producing phenolic monomer. Fuel 153: 40-47. https://doi.org/10.1016/j.fuel.2015.02.102
  11. Kim, H.-Y., Lee, J.-W., Jeffries, T.W., Choi, I.-G. 2011. Response surface optimization of oxalic acid pretreatment of yellow poplar (Liriodendron tulipifera) for production of glucose and xylose monosaccarides. Bioresource technology 102(2): 1440-1446. https://doi.org/10.1016/j.biortech.2010.09.075
  12. Kim, J.-M., Chung, C.-K., Min, B.-H. 2008. A Study on the Optimal Condition of Producing Charcoals to Develop Activated Carbons from a Discarded Timber. Journal of the Korean Institute of Resources Recycling 17(5): 66-75.
  13. Lee, D.-Y., Kim, B.-R. 2010. Adsorption Characteristics of Commercial Wood Charcoal in Korea (I). Journal of the Korean Wood Science and Technology 38(1): 27-35. https://doi.org/10.5658/WOOD.2010.38.1.27
  14. Maddox, I., Murray, A.E. 1983. Production of n-butanol by fermentation of wood hydrolysate. Biotechnology Letters 5(3): 175-178. https://doi.org/10.1007/BF00131898
  15. Martinez, A., Rodriguez, M.E., Wells, M.L., York, S.W., Preston, J.F., Ingram, L.O. 2001. Detoxification of dilute acid hydrolysates of lignocellulose with lime. Biotechnology progress 17(2): 287-293. https://doi.org/10.1021/bp0001720
  16. Meryemoglu, B., Irmak, S., Hasanoglu, A. 2016. Production of activated carbon materials from kenaf biomass to be used as catalyst support in aqueous-phase reforming process. Fuel Processing Technology 151: 59-63. https://doi.org/10.1016/j.fuproc.2016.05.040
  17. Miyafuji, H., Danner, H., Neureiter, M., Thomasser, C., Bvochora, J., Szolar, O., Braun, R. 2003. Detoxification of wood hydrolysates with wood charcoal for increasing the fermentability of hydrolysates. Enzyme and Microbial Technology 32(3): 396-400. https://doi.org/10.1016/S0141-0229(02)00308-3
  18. Morone, A., Pandey, R. 2014. Lignocellulosic biobutanol production: gridlocks and potential remedies. Renewable and Sustainable Energy Reviews 37: 21-35. https://doi.org/10.1016/j.rser.2014.05.009
  19. Nilvebrant, N.-O., Reimann, A., Larsson, S., Jonsson, L.J. 2001. Detoxification of lignocellulose hydrolysates with ion-exchange resins. Applied biochemistry and biotechnology 91(1-9): 35-49.
  20. Rajan, K., Carrier, D.J. 2014. Effect of dilute acid pretreatment conditions and washing on the production of inhibitors and on recovery of sugars during wheat straw enzymatic hydrolysis. Biomass and Bioenergy 62: 222-227. https://doi.org/10.1016/j.biombioe.2014.01.013
  21. Rao, L.V., Goli, J.K., Gentela, J., Koti, S. 2016. Bioconversion of lignocellulosic biomass to xylitol: An overview. Bioresource technology 213: 299-310. https://doi.org/10.1016/j.biortech.2016.04.092
  22. Saka, S., Doi, M. 1998. Removal of toxic substances of chloroform and benzene by carbonized woody materials. Materials Science Research International 4(4): 249-253.
  23. Prado, J.M., Lachos-Perez, D., Forster-Carneiro, T., Rostagno, M.A. 2016. Sub-and supercritical water hydrolysis of agricultural and food industry residues for the production of fermentable sugars: A review. Food and Bioproducts Processing 98: 95-123. https://doi.org/10.1016/j.fbp.2015.11.004
  24. Villarreal, M., Prata, A., Felipe, M., Silva, J.A.E. 2006. Detoxification procedures of eucalyptus hemicellulose hydrolysate for xylitol production by Candida guilliermondii. Enzyme and microbial technology 40(1): 17-24. https://doi.org/10.1016/j.enzmictec.2005.10.032
  25. Wilson, J.J., Deschatelets, L., Nishikawa, N.K. 1989. Comparative fermentability of enzymatic and acid hydrolysates of steam-pretreated aspenwood hemicellulose by Pichia stipitis CBS 5776. Applied microbiology and biotechnology 31(5-6): 592-596. https://doi.org/10.1007/BF00270801
  26. Yucel, H.G., Aksu, Z. 2015. Ethanol fermentation characteristics of Pichia stipitis yeast from sugar beet pulp hydrolysate: Use of new detoxification methods. Fuel 158: 793-799. https://doi.org/10.1016/j.fuel.2015.06.016