References
- P. Alexandorff, Diskrete Raume, Mat. Sb. 2 (1937) 501-518.
-
V. A. Chatyrko, S. E. Han, Y. Hattori, Some remarks concerning semi-
$T_{\frac{1}{2}}$ spaces, Filomat, 28(1) (2014) 21-25. https://doi.org/10.2298/FIL1401021C - S.-E. Han, Non-product property of the digital fundamental group, Information Sciences 171(1-3) (2005) 73-91. https://doi.org/10.1016/j.ins.2004.03.018
- S.-E. Han, On the simplicial complex stemmed from a digital graph, Honam Mathematical Journal 27(1) (2005) 115-129.
-
S.-E. Han, The k-homotopic thinning and a torus-like digital image in
$Z^n$ , Journal of Mathematical Imaging and Vision 31 (1)(2008) 1-16. https://doi.org/10.1007/s10851-007-0061-2 -
S.-E. Han, KD-
$(k_0,\;k_1)$ -homotopy equivalence and its applications, J. Korean Math. Soc. 47 (2010) 1031-1054. https://doi.org/10.4134/JKMS.2010.47.5.1031 - S.-E. Han, A digitization method of the Euclidean nD space associated with the Khalimsky adjacency structure, Computational and Applied Mathematics (2015), DOI 10.1007/s40314-015-0223-6 (in press).
- S.-E. Han, Generalilzation of continuity of maps and homeomorphism for studying 2D digital topological spaces and their applications, Topology and its applications, 196 (2015) 468-482. https://doi.org/10.1016/j.topol.2015.05.024
- S.-E. Han, A link between the FPP for Euclidean spaces and the FPP for their Khalimsky-topologically digitized spaces (2016), submitted.
- S.-E. Han and Woo-Jik Chun, Classification of spaces in terms of both a dizitization and a Marcus-Wyse topological structure, Honam Math. J. 33(4)(2011) 575-589. https://doi.org/10.5831/HMJ.2011.33.4.575
- S.-E. Han, A. Sostak, A compression of digital images derived from a Khalimsky topological structure, Computational and Applied Mathematics 32 (2013) 521-536. https://doi.org/10.1007/s40314-013-0034-6
- S.-E. Han and Wei Yao, An MA-Digitization of Hausdorff spaces by using a connectedness graph of the Marcus-Wyse topology, Discrete Applies Mathematics, 201 (2016) 358-371.
-
S.-E. Han and B.G. Park, Digital graph
$(k_0,\;k_1)$ -isomorphism and its applications, http://atlas-conferences.com/c/a/k/b/35.htm (2003). - J.M. Kang, S.-E. Han and K.C. Min, Digitizations associated with several types of digital topological approaches, Computational and Applied Mathematics, DOI 10.1007/s40314-015-0245-0 (in press) (2015).
- E.D. Khalimsky, Applications of connected ordered topological spaces in topology, Conference of Math. Department of Provoia, (1970).
- E. Khalimsky, R. Kopperman, P.R. Meyer, Computer graphics and connected topologies on finite ordered sets, Topology and Its Applications, 36(1) (1991) 1-17. https://doi.org/10.1016/0166-8641(90)90031-V
- T. Y. Kong, A. Rosenfeld, Topological Algorithms for the Digital Image Processing, Elsevier Science, Amsterdam, 1996.
- V. Kovalevsky, Axiomatic Digital Topology, Journal of Mathematical Imaging and Vision 26 (2006) 41-58. https://doi.org/10.1007/s10851-006-7453-6
- A. Rosenfeld, Digital topology, Am. Math. Mon. 86 (1979) 76-87.
- A. Rosenfeld, Continuous functions on digital pictures, Pattern Recognition Letters, 4 (1986) 177-184. https://doi.org/10.1016/0167-8655(86)90017-6
- F. Wyse and D. Marcus et al., Solution to problem 5712, Amer. Math. Monthly 77(1970) 1119. https://doi.org/10.2307/2316121
Cited by
- Homotopic properties of an MA -digitization of 2D Euclidean spaces 2017, https://doi.org/10.1016/j.jcss.2017.07.003