References
- Ashford, S.A., Rollins, K.M. and Lane, J.D. (2004), "Blast-induced liquefaction for full-scale foundation testing", J. Geotech. Geoenviron. Eng., ASCE, 130(8), 798-806. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:8(798)
- Chakraborty, T., Larcher, M. and Gebbeke, N. (2014), "Performance of tunnel lining materials under internal blast loading", Int. J. Protect. Struct., 5(1), 83-96. https://doi.org/10.1260/2041-4196.5.1.83
- Choi, S., Wang, J., Munfakh, G. and Dwyre, E. (2006), "3D nonlinear blast model analysis for underground structures", Proceedings of GeoCongress, ASCE, New York, NY, USA, February, pp. 1-6.
- Chou, H.S., Yang, C.Y., Hsieh, B.J. and Chang, S.S. (2001), "A study of liquefaction related damages on shield tunnels", Tunn. Undergr. Space Technol., 16(3), 185-193. https://doi.org/10.1016/S0886-7798(01)00057-8
- Davis, J.R. (1996) Cast Irons, ASM International, Materials Park, OH, USA.
- De, A. (2012), "Numerical simulation of surface explosions over dry, cohesionless soil", Comput. Geotech., 43, 72-79. https://doi.org/10.1016/j.compgeo.2012.02.007
- Desai, C.S., Zaman, M.M., Lightner, J.G. and Siriwardane, H.J. (1984), "Thin-layer element for interface and joints", Int. J. Numer. Anal. Meth. Geomech., 8(1), 19-43. https://doi.org/10.1002/nag.1610080103
- Farr, J.V. (1990), "One-dimensional loading-rate effects", J. Geotech. Eng., ASCE, 116(1), 119-135. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:1(119)
- Feldgun, V.R., Kochetkov, A.V., Karinskia, Y.S. and Yankelevsky, D.S. (2008), "Blast response of a lined cavity in a porous saturated soil", Int. J. Impact Eng., 35(3), 953-966. https://doi.org/10.1016/j.ijimpeng.2007.06.010
- Fragaszy, R.J. and Voss, M.E. (1986), "Undrained compression behavior of sand", J. Geotech. Eng., ASCE, 112 (3), 334-347.
- Han, Y. and Liu, H. (2015), "Finite Element simulation of medium-range blast loading using LS-DYNA", Shock Vib., Article ID 631493.
- He, W., Chen, J.Y. and Guo, J. (2011), "Dynamic analysis of subway station subjected to internal blast loading", J. Central South Univ. Technol., 18(3), 917-924. https://doi.org/10.1007/s11771-011-0781-8
- Jayasinghe, L.B., Thambiratnam, D.P., Perera, N. and Jayasooriya, J.H.A.R. (2013), "Computer simulation of underground blast response of pile in saturated soil", Comput. Struct., 120, 86-95. https://doi.org/10.1016/j.compstruc.2013.02.016
- Jayasinghe, L.B., Thambiratnam, D.P., Perera, N. and Jayasooriya, J.H.A.R. (2014), "Blast response of reinforced concrete pile using fully coupled computer simulation techniques", Comput. Struct., 135, 40-49. https://doi.org/10.1016/j.compstruc.2014.01.017
- Koneshwaran, S., Thambiratnam, D. and Gallage, C. (2015), "Performance of buried tunnels subjected to surface blast incorporating fluid-structure interaction", J. Perform. Constr. Facil., ASCE, 29(3), 04014084. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000585
- Lewis, B.A. (2004), Manual for LS-DYNA Soil Material Model 147; Technical Publication No. FHWAHRT-04-095, Federal Highway Administration, Washington D.C., USA
- Liu, H. (2009), "Dynamic analysis of subway structures under blast loading", Geotech. Geol. Eng., 27(6), 699-711. https://doi.org/10.1007/s10706-009-9269-9
- Liu, H. (2012), "Soil-structure interaction and failure of cast-iron subway tunnels subjected to medium internal blast loading", J. Perform. Construct. Facil., ASCE, 26(5), 691-701. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000292
- Liu, H. and Nezili, S. (2016), "Centrifuge modeling of underground tunnel in saturated soil subjected to internal blast loading", J. Perform. Constr. Facil., ASCE, 30, 06015001. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000760
- Liu, H. and Song, E. (2006), "Working mechanism of cutoff walls in reducing uplift of large underground structures induced by soil liquefaction", Comput. Geotech., 33(4-5), 209-221. https://doi.org/10.1016/j.compgeo.2006.07.002
- LS-DYNA (2012a), Version 971 R6.0.0 Keyword User's Manual; Livermore Software Technology Corporation (LSTC), CA, USA
- LS-DYNA (2012b), Version 971 R6.0.0 Theory Manual; Livermore Software Technology Corporation (LSTC), CA, USA.
- Lu, Y., Wang, Z. and Chong, K. (2005), "A comparative study of buried structure in soil subjected to blast load using 2D and 3D numerical simulations", Soil Dyn. Earthq. Eng., 25(4), 275-288. https://doi.org/10.1016/j.soildyn.2005.02.007
- UFC 3-340-02 (2008), Structures to Resist the Effects of Accidental Explosions; Department of the Army and Defense Special Weapons Agency, Washington D.C., USA.
- Veyera, G.E. and Charlie, W.A. (1990), "Laboratory study of compressional liquefaction", J. Geotech. Eng., ASCE, 116(5), 790-804. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:5(790)
- Wang, Z., Lu, Y. and Bai, C. (2008), "Numerical analysis of blast-induced liquefaction of soil", Comput. Geotech., 35(2), 196-209. https://doi.org/10.1016/j.compgeo.2007.04.006
- Xu, T.H. and Zhang, L.M. (2015), "Numerical implementation of a bounding surface plasticity model for sand under high strain-rate loadings in LS-DYNA", Comput. Geotech., 66, 203-218. https://doi.org/10.1016/j.compgeo.2015.02.002
Cited by
- Roof failure of shallow tunnel based on simplified stochastic medium theory vol.14, pp.6, 2016, https://doi.org/10.12989/gae.2018.14.6.571
- New methodology to prevent blasting damages for shallow tunnel vol.15, pp.6, 2016, https://doi.org/10.12989/gae.2018.15.6.1227
- Field measurement and numerical simulation of excavation damaged zone in a 2000 m-deep cavern vol.16, pp.4, 2016, https://doi.org/10.12989/gae.2018.16.4.399
- Investigation on the propagation mechanism of explosion stress wave in underground mining vol.17, pp.3, 2016, https://doi.org/10.12989/gae.2019.17.3.295
- Blasting Response of a Two-Storey RC Building Under Different Charge Weight of TNT Explosives vol.44, pp.2, 2016, https://doi.org/10.1007/s40996-019-00256-0
- Incorporating ground motion effects into Sasaki and Tamura prediction equations of liquefaction-induced uplift of underground structures vol.22, pp.1, 2020, https://doi.org/10.12989/gae.2020.22.1.025
- Effect of shear zone on dynamic behaviour of rock tunnel constructed in highly weathered granite vol.23, pp.3, 2016, https://doi.org/10.12989/gae.2020.23.3.245
- Dynamic stability analysis of rock tunnels subjected to impact loading with varying UCS vol.24, pp.6, 2016, https://doi.org/10.12989/gae.2021.24.6.505