• 제목/요약/키워드: soil-lining interaction

검색결과 23건 처리시간 0.022초

원형터널에서 지반-라이닝 상호작용에 대한 수학적 해석해에 관한 연구 (An analytical solution for soil-lining interaction in a deep and circular tunnel)

  • 이성원;정재형;김창용;배규진;이주공;박경호
    • 한국터널지하공간학회 논문집
    • /
    • 제11권4호
    • /
    • pp.427-435
    • /
    • 2009
  • 본 연구는 원형 터널에서 지반-라이닝 상호작용에 대한수학적 모델에 관한 연구를 다룬다. 정적, 동적 하중으로 인하여 터널 라이닝에서 발생하는 축력과 모멘트를 구하는 간단한 수학적 해가 제시되었다. 수학적 해를 유도하기 위하여 지반-라이닝의 경계면에서의 힘-변위 관계식을 고려하였고, 경계면에서의 상호작용을 고려하고자 새로운 계수비들을 제시하였다. 축력과 모멘트에 대한 계수비의 영향이 조사되었다.

Failure of circular tunnel in saturated soil subjected to internal blast loading

  • Han, Yuzhen;Liu, Huabei
    • Geomechanics and Engineering
    • /
    • 제11권3호
    • /
    • pp.421-438
    • /
    • 2016
  • Explosions inside transportation tunnels might result in failure of tunnel structures. This study investigated the failure mechanisms of circular cast-iron tunnels in saturated soil subjected to medium internal blast loading. This issue is crucial to tunnel safety as many transportation tunnels run through saturated soils. At the same time blast loading on saturated soils may induce residual excess pore pressure, which may result in soil liquefaction. A series of numerical simulations were carried out using Finite Element program LS-DYNA. The effect of soil liquefaction was simulated by the Federal Highway soil model. It was found that the failure modes of tunnel lining were differed with different levels of blast loading. The damage and failure of the tunnel lining was progressive in nature and they occurred mainly during lining vibration when the main event of blast loading was over. Soil liquefaction may lead to more severe failure of tunnel lining. Soil deformation and soil liquefaction were determined by the coupling effects of lining damage, lining vibration, and blast loading. The damage of tunnel lining was a result of internal blast loading as well as dynamic interaction between tunnel lining and saturated soil, and stress concentration induced by a ventilation shaft connected to the tunnel might result in more severe lining damage.

계면요소를 이용한 지반-라이닝 상호작용 모델에 의한 터널 콘크리트 라이닝 연구 (A study of tunnel concrete lining design using the ground-lining interaction model with the interface element)

  • 허도학;문현구
    • 한국터널지하공간학회 논문집
    • /
    • 제17권6호
    • /
    • pp.575-586
    • /
    • 2015
  • NATM터널의 콘크리트 라이닝에 작용하는 지반하중을 산정하는 방법으로 수치해석적 기법인 지반-라이닝 상호작용모델(Ground-Lining Interaction Model, GLI 모델)에 의한 지반하중 산정방법이 제안되었다. 그러나, 기존의 GLI 모델은 지반과 지보재 또는 콘크리트 라이닝 사이에 존재하는 계면(Interface)의 구조적 역할을 반영하지 못하였다. 이에 본 연구에서는 기존의 GLI 모델에 계면요소를 반영하여 보다 실제에 가까운 모델로 구현하였다. 그리고, 지반조건 및 토피별 지반하중을 수치해석을 통해 산정하고 기존의 GLI모델 지반하중 상관식을 수정하여 제안하였다. 연구결과, 기존 모델에 비해 계면요소 반영시 지반하중은 토피두께에 따라 IV등급 지반조건에서는 평균 88~106%, 풍화토 지반조건에서는 평균 47~57% 수준으로 감소하였다. 본 연구결과로 콘크리트 라이닝에 작용하는 지반하중을 실제에 가까운 모델로 산정할 수 있으며, 상관식을 이용하여 일관되고 경제적인 설계가 가능하게 될 것으로 예상된다.

Ground vibrations due to underground trains considering soil-tunnel interaction

  • Yang, Y.B.;Hung, H.H.;Hsu, L.C.
    • Interaction and multiscale mechanics
    • /
    • 제1권1호
    • /
    • pp.157-175
    • /
    • 2008
  • A brief review of the research works on ground vibrations caused by trains moving in underground tunnels is first given. Then, the finite/infinite element approach for simulating the soil-tunnel interaction system with semi-infinite domain is summarized. The tunnel is assumed to be embedded in a homogeneous half-space or stratified soil medium. The train moving underground is modeled as an infinite harmonic line load. Factors considered in the parametric studies include the soil stratum depth, damping ratio and shear modulus of the soil with or without tunnel, and the thickness of the tunnel lining. As far as ground vibration is concerned, the existence of a concrete tunnel may somewhat compensate for the loss due to excavation of the tunnel. For a soil stratum resting on a bedrock, the resonance peak and frequency of the ground vibrations caused by the underground load can be rather accurately predicted by ignoring the existence of the tunnel. Other important findings drawn from the parametric studies are given in the conclusion.

개착식 터널에서 파형강판 라이닝의 동적 거동 특성 (The Seismic Behavior of Corrugated Steel Plate Lining in Cut-and-Cover Tunnel)

  • 김정호;김낙영;이용준;이승호;정형식
    • 한국터널공학회:학술대회논문집
    • /
    • 한국터널공학회 2005년도 학술발표회 논문집
    • /
    • pp.233-247
    • /
    • 2005
  • Most tunnel lining material which has been used in the domestic is a concrete. But many problems as the construction period, the cost, and the crack occurrence for the design, construction, and management were happened in the concrete lining. For this reason, many research institutes like the Korea Highway Corporation recognize the necessity of an alternate material development and grow on the interest for that. So in this study, the seismic behaviour characteristics for the application of the Corrugated Steel Plate Lining in cut-and-cover tunnel are evaluated as several conditions for the backfill height, the cutting slope, and the relative density of backfill soil are changed. The compressive stress which is calculated in the Corrugated Steel Plate Lining by the seismic load is decreased as the backfill height increases and the cut slope grows gentle. Also, the moment shows the tendency of decrease according to the increase of the backfill height. But in the case of the relative density of the backfill soil is small, the moment increases according to the increase of the backfill height and affects the dynamic behaviour characteristic. So it is considered that the relative density of the backfill soil is also the important point. As the result in analyzing the seismic response characteristics of the reinforcement spacing of the Corrugated Steel Plate, the variation in the compressive force is hardly happened, but the moment and the shear force increase on the reinforcement spacing being narrow.

  • PDF

지반의 강성변화에 따른 지반-터널 동적 상호작용 연구 (Ground-Tunnel Interaction Effect Depending on the Ground Stiffness)

  • 김대상
    • 터널과지하공간
    • /
    • 제11권4호
    • /
    • pp.339-343
    • /
    • 2001
  • 쉴드 터널과 같이 토사 지반 혹은 연암 지역에 건설되는 원형 단면을 가진 터널은 지진 시에 지반의 전단변형의 영향을 받아 좌우교차로 경사진 타원형상의 변형을 반복한다. 본 논문에서는 이 진동모드를 이용하여 지반-터널계의 상호작용에 관하여 검토하였다. 터널주변지반은 균질한 탄성체로 가정되었고 지반-터널라이닝 경계가 완전히 부착되어 있는 경우에 대한 상호작용효과를 검토하였다. 지반의 포아송비 및 강성이 증가할수록 지반으로부터 터널라이닝에 전달되는 변형률이 증가함을 확인할 수 있었다.

  • PDF

Capacity-spectrum push-over analysis of rock-lining interaction model for seismic evaluation of tunnels

  • Sina Majidian;Serkan Tapkin;Emre Tercan
    • Earthquakes and Structures
    • /
    • 제26권5호
    • /
    • pp.327-336
    • /
    • 2024
  • Evaluation of tunnel performance in seismic-prone areas demands efficient means of estimating performance at different hazard levels. The present study introduces an innovative push-over analysis approach which employs the standard earthquake spectrum to simulate the performance of a tunnel. The numerical simulation has taken into account the lining and surrounding rock to calculate the rock-tunnel interaction subjected to a static push-over displacement regime. Elastic perfectly plastic models for the lining and hardening strain rock medium were used to portray the development of plastic hinges, nonlinear deformation, and performance of the tunnel structure. Separately using a computational algorithm, the non-linear response spectrum was approximated from the average shear strain of the rock model. A NATM tunnel in Turkey was chosen for parametric study. A seismic performance curve and two performance thresholds are introduced that are based on the proposed nonlinear seismic static loading approach and the formation of plastic hinges. The tunnel model was also subjected to a harmonic excitation with a smooth response spectrum and different amplitudes in the fully-dynamic phase to assess the accuracy of the approach. The parametric study investigated the effects of the lining stiffness and capacity and soil stiffness on the seismic performance of the tunnel.

A hybrid MC-HS model for 3D analysis of tunnelling under piled structures

  • Zidan, Ahmed F.;Ramadan, Osman M.
    • Geomechanics and Engineering
    • /
    • 제14권5호
    • /
    • pp.479-489
    • /
    • 2018
  • In this paper, a comparative study of the effects of soil modelling on the interaction between tunnelling in soft soil and adjacent piled structure is presented. Several three-dimensional finite element analyses are performed to study the deformation of pile caps and piles as well as tunnel internal forces during the construction of an underground tunnel. The soil is modelled by two material models: the simple, yet approximate Mohr Coulomb (MC) yield criterion; and the complex, but reasonable hardening soil (HS) model with hyperbolic relation between stress and strain. For the former model, two different values of the soil stiffness modulus ($E_{50}$ or $E_{ur}$) as well as two profiles of stiffness variation with depth (constant and linearly increasing) were used in attempts to improve its prediction. As these four attempts did not succeed, a hybrid representation in which the hardening soil is used for soil located at the highly-strained zones while the Mohr Coulomb model is utilized elsewhere was investigated. This hybrid representation, which is a compromise between rigorous and simple solutions yielded results that compare well with those of the hardening soil model. The compared results include pile cap movements, pile deformation, and tunnel internal forces. Problem symmetry is utilized and, therefore, one symmetric half of the soil medium, the tunnel boring machine, the face pressure, the final tunnel lining, the pile caps, and the piles are modelled in several construction phases.

Dynamic response of a lined tunnel with transmitting boundaries

  • Fattah, Mohammed Y.;Hamoo, Mohammed J.;Dawood, Shatha H.
    • Earthquakes and Structures
    • /
    • 제8권1호
    • /
    • pp.275-304
    • /
    • 2015
  • The objective of this paper is to investigate the validity of transmitting boundaries in dynamic analysis of soil-structure interaction problems. As a case study, the proposed Baghdad metro line is considered. The information about the dimensions and the material properties of the concrete tunnel and surrounding soil were obtained from a previous study. A parametric study is carried out to investigate the effect of several parameters including the peak value of the horizontal component of earthquake displacement records and the frequency of the dynamic load. The computer program (Mod-MIXDYN) is used for the analysis. The numerical results are analyzed for three conditions; finite boundaries (traditional boundaries), infinite boundaries modelled by infinite elements (5-node mapped infinite element) presented by Selvadurai and Karpurapu, 1988), and infinite boundaries modelled by dashpot elements (viscous boundaries). It was found that the transmitting boundary absorbs most of the incident energy. The distinct reflections observed for the "fixed boundaries" disappear by using "transmitted boundaries". This is true for both cases of using viscous boundaries or mapped infinite elements. The type and location of the dynamic load represent two controlling factors in deciding the importance of using infinite boundaries. It was found that the results present significant differences when earthquake is applied as a base motion or a pressure load is applied at the surface ground. The peak value of the vertical displacement at nodes A, B, E and F (located at the tunnel's crown and side walls, and at the surface above the tunnel and at the surface 6.5 m away from tunnel's centre respectively) increases with the frequency of the surface pressure load for both cases 1 and 2 (traditional boundaries and mapped infinite elements respectively) while it decreases for case 3 (viscous boundaries). The modular ratio Ec/Es (modulus of elasticity of the concrete lining to that of the surrounding soil) has a considerable effect on the peak value of the horizontal displacement at node B (on the side wall of the tunnel lining) increase about (17.5) times, for the three cases (1, 2, and 3).

Parametric study of the convergence of deep tunnels with long term effects: Abacuses

  • Quevedo, Felipe P.M.;Bernaud, Denise
    • Geomechanics and Engineering
    • /
    • 제15권4호
    • /
    • pp.973-986
    • /
    • 2018
  • The objective of this paper is to present abacuses obtained from a parametric study of deep-lined tunnels using a numerical finite element model. This numerical model was implemented in software GEOMEC91, which is a two-dimensional axisymmetric model that considers the progress of excavation and the placing of the lining through the activation and deactivation of elements. It is adopted a step of excavation constant (1/3 of radius), constant velocity and circular cross section along the tunnel axis. It is used for rock mass a viscoplastic constitutive law with von-Mises criterion of viscoplasticity without hardening whose deformation rate over time is given by the Bingham model. The lining uses a linear elastic constitutive law. In total are 1716 analysis presented in 60 abacuses that show the value of ultimate convergence ($U_{eq}$) due to tunneling speed. In addition, it is shown an example of the use of the abacuses to determine the ultimate convergence ($U_{eq}$) of the tunnel and pressure ($P_{eq}$) on the lining.