References
- C. Zhou, Y. Zhang, Y. Li, and J. Liu, Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor, Nano Lett., 13, 2078-2085 (2013). https://doi.org/10.1021/nl400378j
- T. Liu, L. Finn, M. Yu, H. Wang, T. Zhai, X. Lu, Y. Tong, and Y. Li, Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability, Nano Lett., 14, 2522-2527 (2014). https://doi.org/10.1021/nl500255v
- L Yang, S. Cheng, Y. Ding, X. Zhu, Z. L. Wnag, and M. Liu, Hierarchical network architectures of carbon fiber paper supported cobalt oxide nanonet for high-capacity pseudocapacitors, Nano Lett., 12, 321-325 (2012). https://doi.org/10.1021/nl203600x
-
M. Yang, S. B. Hong, and B. G. Choi, Hierarchical core/shell structure of
$MnO_2$ @polyaniline composites grown on carbon fiber paper for application in pseudocapacitors, Phys. Chem. Chem. Phys., 17, 29874-29879 (2015). https://doi.org/10.1039/C5CP04761G - X. Zhao, B. M. Sanchez, P. J. Dobson, and P. S. Gran, The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices, Nanoscale, 3, 839-855 (2011). https://doi.org/10.1039/c0nr00594k
- S. Zhang, and N. Pan, Supercapacitors performance evaluation, Adv. Energy Mater., 5, 1401401-1401420 (2015). https://doi.org/10.1002/aenm.201401401
- K. Naoi, S. Ishimoto, J.-I. Miyamoto, and W. Naoi, Second generation 'nanohybrid supercapacitor': evoluation of capacitive energy storage devices, Energy Environ. Sci., 5, 9363-9373 (2012). https://doi.org/10.1039/c2ee21675b
-
C.-C. Hu, K.-H. Chang, M.-C. Lin, and Y.-T. Wu, Design and tailoring of the nanotubular arrayed architecture of hydrous
$RuO_2$ for next generation supercapacitors. Nano Lett., 6, 2690-2695 (2006). https://doi.org/10.1021/nl061576a - M. M. P. Madrigal, F. Estrany, E. Armelin, D. D. Diaz, and C. Aleman, Towards sustainable solid-state supercapacitors: electroactive conducting polymers combined with biohydrogels, J. Mater. Chem. A, 4, 1792-1805 (2016). https://doi.org/10.1039/C5TA08680A
- J. Cherusseri and K. K. Kar, Polypyrrole-decorated 2D carbon nanosheet electrodes for supercapacitors with high areal capacitance, RSC Adv., 6, 60454-60466 (2016). https://doi.org/10.1039/C6RA01402J
- K. Zhang, L. L. Zhang, X. S. Zhao, and J. Wu, Graphene/polyaniline nanofiber composites as supercapacitor electrodes, Chem. Mater., 22, 1392-1401 (2010). https://doi.org/10.1021/cm902876u
- S. Cho, K.-H. Shin, and J. Jang, Enhanced electrochemical performance of highly porous supercapacitor electrodes based on solution processed polyaniline thin films, ACS Appl. Mater. Interfaces, 5, 9186-9193 (2013). https://doi.org/10.1021/am402702y
-
T. G. Yun, B. I. Hwang, D. Kim, S. Hyun, and S. M. Han, Polypyrrole-
$MnO_2$ -coated textile-based flexible-stretchable supercapacitor with high electrochemical and mechanical reliability, ACS Appl. Mater. Interfaces, 7, 9228-9234 (2015). https://doi.org/10.1021/acsami.5b01745 - C. Bora, J. Sharma, and S. Dolui, Polypyrrole/sulfnoated graphene composite as electrode material for supercapacitor, J. Phys. Chem. C, 118, 29688-29694 (2014). https://doi.org/10.1021/jp511095s
- S. Biswas and L. T. Drzal, Multilayered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes, Chem. Mater., 22, 5667-5671 (2010). https://doi.org/10.1021/cm101132g
- F. F. D. Belanger, Electropolymerization of polypyrrole and polyaniline-polypyrrole from organic acidic medium, J. Phys. Chem. B, 103, 9044-9054 (1999). https://doi.org/10.1021/jp9916790
- D. Y. Liu and J. R. Reynolds, Dioxythiophene-based polymer electrodes for supercapacitor modules, ACS Appl. Mater. Interfaces, 2, 3586-3593 (2010). https://doi.org/10.1021/am1007744
- S. Chen and I. Zhitomirsky, Polypyrrole electrodes doped with sulfanilic acid azochromotrop for electrochemical supercapacitors, J. Power Sources, 243, 865-871 (2013). https://doi.org/10.1016/j.jpowsour.2013.06.098
- K. Shi and I. Zhitomirsky, Influence of current collector on capacitive behavior and cycling stability of tiron doped polypyrrole electrodes, J. Power Sources, 240, 42-49 (2013). https://doi.org/10.1016/j.jpowsour.2013.03.163
- M. Yang, B. G. Choi, S. C. Jung, Y.-K. Han, Y. S. Huh, and S. B. Lee, Polyoxometalate-coupled graphene via polymeric ionic liquid linker for supercapacitors, Adv. Funct. Mater., 24, 7301-7309 (2014). https://doi.org/10.1002/adfm.201401798
- M. Yang, D. S. Kim, J. H. Yoon, S. B. Hong, S. W. Jeong, D. E. Yoo, T. J. Lee, S. J. Lee, K. G. Lee, and B. G. Choi, Nanopillar films with polyoxometalate-doped polyaniline for electrochemical detection of hydrogen peroxide, Analyst, 141, 1319-1324 (2016). https://doi.org/10.1039/C5AN02134K
- J. Hu, Y. Ji, W. Chen, C. Streb, and Y.-F. Song, "Wiring" redox-active polyoxometalates to carbon nanotubes using a sonication-driven periodic functionalization strategy, Energy Environ. Sci., 9, 1095-1101 (2016). https://doi.org/10.1039/C5EE03084F
- A. K. Cuentas-Gallegos, M. Lira-Cantu, N. Casan-Pastor, and P. Gomez-Romero, Nanocomposite hybrid molecular materials for application in solid-state electrochemical supercapacitors, Adv. Funct. Mater., 15, 1125-1133 (2005). https://doi.org/10.1002/adfm.200400326
- G. M. Suppes, B. A. Deore, and M. S. Freund, Porous conducting polymer/heteropolyoxometalate hybrid material for electrochemical supercapacitor applications, Langmuir, 24, 1064-1069 (2008). https://doi.org/10.1021/la702837j
- N. Anwar, M. Vagin, F. Laffir, G. Armstrong, C. Dickinson, and T. McCormac, Transition metal ion-substituted polyoxometalates entrapped in polypyrrole as an electrochemical sensor for hydrogen peroxide, Analyst, 137, 624-630 (2012). https://doi.org/10.1039/C1AN15665A
- Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, and L.-C. Qin, Polyaniline-coated electro-etched carbon fiber cloth electrodes for supercapacitors, J. Phys. Chem. C, 115, 23584-23590 (2011). https://doi.org/10.1021/jp203852p
- H. Wang and X. Wang, Growing nickel cobaltite nanowires and nanosheets on carbon cloth with different pseudocapacitive performance, ACS Appl. Mater. Interfaces, 5, 6255-6260 (2013). https://doi.org/10.1021/am4012484
- G. Bajwa, M. Genovese, and K. Lian, Multilayer polyoxometalates-carbon nanotube composites for electrochemical capacitors, ECS J. Solid State Sci. Technol., 2, M3046-M3050 (2013). https://doi.org/10.1149/2.005310jss
Cited by
- A multilayer assembly of two mixed-valence Mn16-containing polyanions and study of their electrocatalytic activities towards water oxidation vol.47, pp.21, 2018, https://doi.org/10.1039/C8DT00927A