초록
본 연구에서는 철도차량의 대형사고의 주요원인 되는 타고오름 충돌에 대해 이론 모델을 정립하여 선두차량의 타고오름 거동에 대한 이론식을 도출하였다. 이론식을 검증하기 위하여 상용 소프트웨어인 LS-DYNA를 사용하여 이론모델과 동일한 단순 2차원 모델과 실제 동력대차 모델이 적용된 단순 3차원 모델을 만들어 시뮬레이션으로 비교하였다. 타고오름 현상에서 가장 중요한 전두 완충기 수직변위에 대해 시뮬레이션과 이론식을 비교한 결과 최대 편차율은 0.5 [%]과 3.9 [%] 발생하여 이론식이 실제 모델에도 잘 적용될 수 있음을 확인하였다. 또한, 고무 완충기와 유압 버퍼 2가지를 적용한 여러 가지 충돌조건에 대해 이론식을 적용하여 선두 차량 간 타고오름 량을 분석하고, 사고 후 재현 시뮬레이션이나 전두부 충돌완충 설계 시 활용할 수 있는 이론적 방법을 제시하였다.
In this study, we derived an theoretical equation, using a simplified spring-mass model for the rolling stock, to obtain the overriding behavior of a leading vehicle, which is considered as the main factor in train accidents. To verify the derived equation, we created a simple 2D model based on the theoretical model, and a simple 3D model considering the characteristics of the power bogie. We then compared the theoretical results with the simulation results obtained using LS-DYNA. The maximum relative derivations in the vertical displacements at the first end-buffer, which is the most important point in overriding, were 3.5 [%] and 1.7 [%] between the two results. Further, we evaluated collision-induced overriding displacements using the theoretical equation for a rubber draft gear, a hydraulic buffer under various collision conditions. We have suggested a theoretical approach for the realization of overriding collision accidents or the energy absorption design of the front end of trains.