Dosimetric evaluation of using in-house BoS Frame Fixation Tool for the Head and Neck Cancer Patient

두경부암 환자의 양성자 치료 시 사용하는 자체 제작한 BoS Frame 고정장치의 선량학적 유용성 평가

  • Kim, kwang suk (Department of Radiation Oncology, Samsung Seoul Hospital) ;
  • Jo, kwang hyun (Department of Radiation Oncology, Samsung Seoul Hospital) ;
  • Choi, byeon ki (Department of Radiation Oncology, Samsung Seoul Hospital)
  • 김광석 (삼성서울병원 방사선종양학과) ;
  • 조광현 (삼성서울병원 방사선종양학과) ;
  • 최병기 (삼성서울병원 방사선종양학과)
  • Received : 2016.05.27
  • Accepted : 2016.06.23
  • Published : 2016.06.30

Abstract

Purpose : BoS(Base of Skull) Frame, the fixation tool which is used for the proton of brain cancer increases the lateral penumbra by increasing the airgap (the distance between patient and beam jet), due to the collision of the beam of the posterior oblique direction. Thus, we manufactured the fixation tool per se for improving the limits of BoS frame, and we'd like to evaluate the utility of the manufactured fixation tool throughout this study. Materials and Methods : We've selected the 3 patients of brain cancer who have received the proton therapy from our hospital, and also selected the 6 beam angles; for this, we've selected the beam angle of the posterior oblique direction. We' ve measured the planned BoS frame and the distance of Snout for each beam which are planned for the treatment of the patient using the BoS frame. After this, we've proceeded with the set-up that is above the location which was recommended by the manufacturer of the BoS frame, at the same beam angle of the same patient, by using our in-house Bos frame fixation tool. The set-up was above 21 cm toward the superior direction, compared to the situation when the BoS frame was only used with the basic couch. After that, we've stacked the snout to the BoS frame as much as possible, and measured the distance of snout. We've also measured the airgap, based on the gap of that snout distance; and we've proceeded the normalization based on each dose (100% of each dose), after that, we've conducted the comparative analysis of lateral penumbra. Moreover, we've established the treatment plan according to the changed airgap which has been transformed to the Raystation 5.0 proton therapy planning system, and we've conducted the comparative analysis of DVH(Dose Volume Histogram). Results : When comparing the result before using the in-house Bos frame fixation tool which was manufactured for each beam angle with the result after using the fixation tool, we could figure out that airgap than when not used in accordance with the use of the in-house Bos frame fixation tool was reduced by 5.4 cm ~ 15.4 cm, respectively angle. The reduced snout distance means the airgap. Lateral Penumbra could reduce left, right, 0.1 cm ~ 0.4 cm by an angle in accordance with decreasing the airgap while using each beam angle in-house Bos frame fixation tool. Due to the reduced lateral penumbra, Lt.eyeball, Lt.lens, Lt. hippocampus, Lt. cochlea, Rt. eyeball, Rt. lens, Rt. cochlea, Rt. hippocampus, stem that can be seen that the dose is decreased by 0 CGE ~ 4.4 CGE. Conclusion : It was possible to reduced the airgap by using our in-house Bos frame fixation tool for the proton therapy; as a result, it was possible to figure out that the lateral penumbra reduced. Moreover, it was also possible to check through the comparative analysis of the treatment plan that when we reduce the lateral penumbra, the reduction of the unnecessary irradiation for the normal tissues. Therefore, Using the posterior oblique the Brain cancer proton therapy should be preceded by decreasing the airgap, by using our in-house Bos frame fixation tool; also, the continuous efforts for reducing the airgap as much as possible for the proton therapy of other area will be necessary as well.

목 적 : 두경부암의 양성자 치료 시 BoS frame ($Q-fix^{TM}$)을 사용하면 후사방향의 빔 조사 시 couch 와 snout 사이 충돌을 피하면서 Airgap 을 최소화할 수 있다. 이는 couch 에서 BoS frame 을 얼마나 많이 extended 시켰는지가 각 치료 빔 방향의 Airgap (환자와 빔 사출구 거리)을 결정하기 때문이다. 이에 본원에서는 BoS frame의 제한점을 개선하기 위하여 고정장치를 자체 제작하였고, 제작한 고정장치의 유용성을 본 연구를 통해 선량학적으로 평가하고자 한다. 대상 및 방법 : 본원에서 양성자치료를 받은 Brain Cancer환자 3명의 빔 각도 중 후사방향의 빔 6개를 선택하였다. 현재 치료계획 되어 있는 환자를 기존 방식대로 BoS frame만 사용했을 때 각 환자마다 왼쪽후사방향, 오른쪽 후사방향의 빔에서 충돌을 피할 수 있는 snout 위치를 측정하고 이 위치에 따른 Airgap과 Lateral penumbra 영역을 계산하고 DVH값을 분석하였다. 같은 환자의 동일한 빔에서 자체 제작한 BoS frame 고정장치를 사용하여 제조회사에서 권고한 set-up 사항보다 BoS frame을 21 cm superior방향으로 set-up을 진행하였고, 그 후 충돌을 피할 수 있는 snout위치를 측정하고 이 위치에서 Airgap과 Lateral penumbra영역을 계산하고 DVH값을 분석하였다. 결 과 : 자체 제작 BoS frame 고정장치를 사용함에 따라 사용하지 않았을 때 보다 snout 위치 즉 Airgap을 각각 각도별로 5.4 cm ~ 15.4 cm 줄일 수 있었다. Lateral penumbra는 BoS frame 고정장치를 사용하면서 Airgap을 감소시킴에 따라 각도별로 선량분포곡선에서 왼쪽, 오른쪽 부분을 0.1 cm ~ 0.4 cm 감소시킬 수 있었다. 자체 제작한 BoS frame 고정장치 사용함으로써 감소한 Lateral penumbra에 의해 정상조직에 들어가는 선량을 비교해보면 Lt.eyeball, Lt.lens, Lt.hippocampus, Lt.cochlea, Rt.eyeball, Rt.lens, Rt.cochlea, Rt. hippocampus, stem에 들어가는 선량이 0 CGE ~ 4.4 CGE 감소한 것을 알 수 있었다. 결 론 : 두경부암의 양성자 치료 시 자체제작 BoS frame 고정장치를 사용함에 따라 사용하지 않았을 때보다 후사방향의 빔에서 snout 위치를 감소시킬 수 있었고, Airgap을 줄여 결과적으로 Lateral penumbra를 감소시켜 정상조직에 불필요한 선량을 최소화 할 수 있었다. 이에 본 연구를 통해 자체제작 BoS frame 고정장치의 유용성을 선량학적으로 평가한 결과, 후사방향의 빔을 사용하는 두경부암 환자의 양성자 치료 시 유용하게 사용 될 것으로 기대된다. 마지막으로 두경부암 뿐만 아니라 다른 부위 양성자 치료에서도 Airgap을 최소한 할 수 있는 방법을 고안하여 Lateral penumbra를 줄일 수 있는 지속적인 연구가 필요할 것이라고 사료된다.

Keywords

References

  1. 김재원, 심진섭, 장요종, 강동윤, 최계숙: 양성자치료시 Air Gap 변화에 따른 Lateral penumbra와 선량분포 변화에 대한 비교 및 연구. 대한방사선치료학회지 2010;22(1):47-51
  2. Urie MM, Sisterson JM, Koehler AM, Goitein M, and Zoesman J: Proton beam penumbra Effects of separation between patient and beam modifying device. Med. Phys. 13, 734-741 (1986). https://doi.org/10.1118/1.595974
  3. Suresh Rana, Omar Zeidan, Eric Ramirez, Michael Rains, Junfang Gao, and Yuanshui Zheng: Measurements of lateral penumbra for uniform scanning proton beams under various beam delivery conditions and comparison to the Xio treatment planning system. Med. Phys 40, 091708 (2013) https://doi.org/10.1118/1.4818283
  4. Sairos Safai, Thomas Bortfeld and Martijn Engelsman: Comparison between the lateral penumbra of a collimated double-scattered beam and uncollimated scanning beam in proton radiotherapy. Phys. Med. Biol. 53 (2008) 1729-1750 https://doi.org/10.1088/0031-9155/53/6/016
  5. Oozeer R, Mazal A, Rosenwald JC, et al.: A model for the lateral penumbra in water of a 200-MeV proton beam devoted to clinical applications. Med Phys 24, 1559 (1997)
  6. Hyunuk Jung, Oyeon Kum, Youngyih Han, Hee Chul Park, Jin Sung Kim, and Doo Ho Cho: A virtual simulator designed for collision prevention in proton therapy. Med. Phys 42, 6021 (2015) https://doi.org/10.1118/1.4931411