DOI QR코드

DOI QR Code

Tailoring Low-field Strain Properties of [0.97Bi1/2(Na0.78K0.22)1/2TiO3-0.03LaFeO3]-Bi1/2(Na0.82K0.18)1/2TiO3 Lead-Free Relaxor/Ferroelectric Composites

무연 완화형/정규 강유전체 복합소재 [0.97Bi1/2(Na0.78K0.22)1/2TiO3-0.03LaFeO3]-Bi1/2(Na0.82K0.18)1/2TiO3의 저전계 전계유기 변형 특성 연구

  • Hong, Chang-Hyo (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology) ;
  • Kang, Jin-Kyu (School of Materials Science and Engineering, University of Ulsan) ;
  • Jo, Wook (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology) ;
  • Lee, Jae-Shin (School of Materials Science and Engineering, University of Ulsan)
  • 홍창효 (울산과학기술원 신소재공학부) ;
  • 강진규 (울산대학교 첨단소재공학부) ;
  • 조욱 (울산과학기술원 신소재공학부) ;
  • 이재신 (울산대학교 첨단소재공학부)
  • Received : 2016.04.13
  • Accepted : 2016.05.24
  • Published : 2016.06.01

Abstract

We investigated the effect of $Bi_{1/2}(Na_{0.82}K_{0.18})_{1/2}TiO_3$ (BNKT) modification on the ferroelectric and electric-field-induced strain (EFIS) properties of lead-free $0.97Bi_{1/2}(Na_{0.82}K_{0.18})_{1/2}TiO_3-0.03LaFeO_3$ (BNKTLF) ceramics as a function of BNKT content (x= 0, 0.1, 0.2, 0.3, 0.5, and 1). BNKT-modified BNKTLF powders were synthesized using a conventional solid-state reaction method. As the BNKT content x increased from 0 to 1 the normalized electric-field-induced strain ($S_{max}/E_{max}$) was observed to increase at relatively low fields, i.e., below the poling field. Moreover, BNKTLF-30BNKT showed about 460 pm/V as low as at 3 kV/mm, which is a considerably high value among the lead-free systems reported so far. Consequently, it was confirmed that ceramic-ceramic composite, a mixture of an ergodic relaxor matrix and embedded ferroelectric seeds, is a salient way to make lead-free piezoelectrics practical with enhanced EFIS at low field as well as less hysterical.

Keywords

References

  1. W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, and J. Rodel, J. Electroceram., 29, 71 (2012). [DOI: http://dx.doi.org/10.1007/s10832-012-9742-3]
  2. S. H. Shin and J. H. Yoo, Trans. Electr. Electron. Mater., 15, 226 (2014). [DOI: http://dx.doi.org/10.4313/TEEM.2014.15.4.226]
  3. J. Rodel, K. G. Webber, R. Dittmer, W. Jo, M. Kimura, and D. Damjanovic, J. Eur. Ceram. Soc., 35, 1659 (2015). [DOI: http://dx.doi.org/10.1016/j.jeurceramsoc.2014.12.013]
  4. C. H. Hong, H. S. Han, J. S. Lee, K. Wang, F. Z. Yao, J. F. Li, J. H. Gwon, N. V. Quyet, J. K. Jung, and W. Jo, J. Sensor Sci. & Tech., 24, 228 (2015). [DOI: http://dx.doi.org/10.5369/JSST.2015.24.4.228]
  5. C. H. Hong, H. P. Kim, B. Y. Choi, H. S. Han, J. S. Son, C. W. Ahn, and W. Jo, J. Materiomics, 2, 1 (2016). [DOI: http://dx.doi.org/10.1016/j.jmat.2015.12.002]
  6. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Nature, 432, 84 (2004). [DOI: http://dx.doi.org/10.1038/nature03028]
  7. T. Takenaka and H. Nagata, J. Eur. Ceram. Soc., 25, 2693 (2005). [DOI: http://dx.doi.org/10.1016/j.jeurceramsoc.2005.03.125]
  8. T. R. Shrout and S. J. Zhang, J. Electroceram., 19, 113 (2007). [DOI: http://dx.doi.org/10.1007/s10832-007-9047-0]
  9. S. Zhang, R. Xia, and T. R. Shrout, J. Electroceram., 19, 251 (2007). [DOI: http://dx.doi.org/10.1007/s10832-007-9056-z]
  10. W. Liu and X. Ren, Phys. Rev. Lett., 103, 257602 (2009). [DOI: http://dx.doi.org/10.1103/PhysRevLett.103.257602]
  11. J. Rodel, W. Jo, K.T.P. Seifert, E. M. Anton, T. Granzow, and D. Damjanovic, J. Am. Ceram. Soc., 92, 1153 (2009). [DOI: http://dx.doi.org/10.1111/j.1551-2916.2009.03061.x]
  12. K. Wang and J. F. Li. J. Adv. Ceram., 1, 24 (2012). [DOI: http://dx.doi.org/10.1007/s40145-012-0003-3]
  13. J. F. Li, K. Wang, F. Y. Zhu, L. Q. Cheng, and F. Z. Yao, J. Am. Ceram. Soc., 96, 3677 (2013). [DOI: http://dx.doi.org/10.1111/jace.12715]
  14. B. Malic, J. Koruza, J. Hrescak, J. Bernard, K. Wang, J. G. Fisher, and A. Bencan, Materials, 8, 8117 (2015). [DOI: http://dx.doi.org/10.3390/ma8125449]
  15. S. G. Bae, H. G. Shin, K. H. Chung, J. H. Yoo, and I. H. Im, Trans. Electr. Electron. Mater., 16, 179 (2015). [DOI: http://dx.doi.org/10.4313/TEEM.2015.16.4.179]
  16. S. T. Zhang, A. B. Kounga, E. Aulbach, H. Ehrenberg, and J. Roodel, Appl. Phys. Lett., 91, 112906 (2007). [DOI: http://dx.doi.org/10.1063/1.2783200]
  17. A. Hussain, C. W. Ahn, J. S. Lee, A. Ullah, and I. W. Kim, Sens. Actuat. A, 158, 84 (2010). [DOI: http://dx.doi.org/10.1016/j.sna.2009.12.027]
  18. K. N. Pham, A. Hussain, C. W. Ahn, W. Kim, S. J. Jeong, and J. S. Lee, Mater. Lett., 64, 2219 (2010). [DOI: http://dx.doi.org/10.1016/j.matlet.2010.07.048]
  19. V. Q. Nguyen, H. S. Han, K. J. Kim, D. D. Dang, K. K. Ahn, and J. S. Lee, J. Alloys Compd., 511, 237 (2012). [DOI: http://dx.doi.org/10.1016/j.jallcom.2011.09.043]
  20. H. S. Han, W. Jo, J. K. Kang, C. W. Ahn, I. W. Kim, K. K. Ahn, and J. S. Lee, J. Appl. Phys., 113, 154102 (2013). [DOI: http://dx.doi.org/10.1063/1.4801893]
  21. D. S. Lee, D. H. Lim, M. S. Kim, K. H. Kim, and S. J. Jeong, Appl. Phys. Lett., 99, 062906 (2011). [DOI: http://dx.doi.org/10.1063/1.3621878]
  22. D. S. Lee, S. J. Jeong, M. S. Kim, and J. H. Koh, J. Appl. Phys., 112, 124109 (2012). [DOI: http://dx.doi.org/10.1063/1.4770372]
  23. C. Groh, D. J. Franzbach, W. Jo, K. G. Webber, J. Kling, L. A. Schmitt, H. J. Kleebe, S. J. Jeong, J. S. Lee, and J. Rodel, Adv. Funct. Mater., 24, 356 (2014). [DOI: http://dx.doi.org/10.1002/adfm.201302102]
  24. C. Groh, W. Jo, and J. Rodel, J. Am. Ceram. Soc., 97, 1465 (2014). [DOI: http://dx.doi.org/10.1111/jace.12783]
  25. C. Groh, W. Jo, and J. Rodel, J. Appl. Phys., 115, 234107 (2014). [DOI: http://dx.doi.org/10.1063/1.4876680]
  26. H. Zhang, C. Groh, Q. Zhang, W. Jo, K. G. Webber, and J. Rodel, Adv. Electr. Mater., 1, 1500018 (2015). https://doi.org/10.1002/aelm.201500018
  27. W. Jo and J. Rodel, Appl. Phys. Lett., 99, 042901 (2011). [DOI: http://dx.doi.org/10.1063/1.3615675]