DOI QR코드

DOI QR Code

Low Temperature Test of HWR Cryomodule

  • Kim, Heetae (Rare Isotope Science Project, Institute for Basic Science) ;
  • Kim, Youngkwon (Rare Isotope Science Project, Institute for Basic Science) ;
  • Lee, Min Ki (Rare Isotope Science Project, Institute for Basic Science) ;
  • Park, Gunn-Tae (Rare Isotope Science Project, Institute for Basic Science) ;
  • Kim, Wookang (Rare Isotope Science Project, Institute for Basic Science)
  • 투고 : 2016.05.25
  • 심사 : 2016.05.30
  • 발행 : 2016.05.30

초록

Low temperature test for half-wave resonator (HWR) cryomodule is performed at the superfluid helium temperature of 2 K. The effective temperature is defined for non-uniform temperature distribution. Helium leak detection techniques are introduced for cryogenic system. Experimental set up is shown to make the low temperature test for the HWR cryomodule. The cooldown procedure of the HWR cryomodule is shown from room temperature to 2 K. The cryomodules is precooled with liquid nitrogen and then liquid helium is supplied to the helium reservoirs and cavities. The pressure of cavity and chamber are monitored as a function of time. The vacuum pressure of the cryomodule is not increased at 2 K, which shows leak-tight in the superfluid helium environment. Static heat load is also measured for the cryomodule at 2.5 K.

키워드

참고문헌

  1. Sun Kee Kim et al., Baseline Design Summary, http://risp.ibs.re.kr/orginfo/info_blds.do.
  2. S. J. Yu, S. J. Youn, and H. Kim, Physica B, 405, 638 (2010). https://doi.org/10.1016/j.physb.2009.09.079
  3. H. Kim, S. C. Lim, and Y. H. Lee, Physics Letters A, 375, 2661 (2011). https://doi.org/10.1016/j.physleta.2011.05.051
  4. H. Kim, S. J. Youn, and S. J. Yu, Journal of the Korean Physical Society, 56, 554 (2010). https://doi.org/10.3938/jkps.56.554
  5. H. Kim, W. K. Kim, G.T. Park, I. Shin, S. Choi, and D.O. Jeon, 67,600 (2014).
  6. H. Kim, M.S. Han, D. Perello, and M. Yun, Infrared Physics & Technology, 60, 7(2013). https://doi.org/10.1016/j.infrared.2013.03.003
  7. H. Kim, C.S. Park, and M.S. Han, Optics Communications 325, 68 (2014). https://doi.org/10.1016/j.optcom.2014.04.004
  8. H. Kim, W. K. Kim, G. T. Park, C. S. Park, and H. D. Cho, Infrared Physics & Technology, 67, 49 (2014). https://doi.org/10.1016/j.infrared.2014.07.007
  9. H. Kim, Y. S. Chang, W. K. Kim, Y. W. Jo, and H. J. Kim, Applied Science and Convergence Technology, 24, 77 (2015). https://doi.org/10.5757/ASCT.2015.24.4.77
  10. W. Steckelmacher and M. W. Lucas, J. Phys.D:Appl. Phys., 16, 1453 (1983). https://doi.org/10.1088/0022-3727/16/8/012
  11. L. Fustoss and G Toth, Vacuum, 40, 43 (1990). https://doi.org/10.1016/0042-207X(90)90115-F
  12. S. Choi, G.T. Park and H. Kim, Applied Science and Convergence Technology, 24, 132 (2015). https://doi.org/10.5757/ASCT.2015.24.5.132
  13. H. Kim, K. Seo, B. Tabbert, and G. A. Williams, Europhysics Letters, 58, 395 (2002). https://doi.org/10.1209/epl/i2002-00652-0
  14. H. Kim, P.A. Lemieux, D. J. Durian, and G. A. Williams, Phys. Rev. E 69, 0614081 (2004).