DOI QR코드

DOI QR Code

Surface Treatment of a Titanium Implant using a low Temperature Atmospheric Pressure Plasma Jet

  • Lee, Hyun-Young (Department of Electrical and Computer Engineering, Pusan National University) ;
  • Ok, Jung-Woo (Busan Center, Korea Basic Science Institute) ;
  • Lee, Ho-Jun (Department of Electrical and Computer Engineering, Pusan National University) ;
  • Kim, Gyoo Cheon (Department of Oral Anatomy, Pusan National University) ;
  • Lee, Hae June (Department of Electrical and Computer Engineering, Pusan National University)
  • 투고 : 2016.05.18
  • 심사 : 2016.05.30
  • 발행 : 2016.05.30

초록

The surface treatment of a titanium implant is investigated with a non-thermal atmospheric pressure plasma jet. The plasma jet is generated by the injection of He and $O_2$ gas mixture with a sinusoidal driving voltage of 3 kV or more and with a driving frequency of 20 kHz. The generated plasma plume has a length up to 35 mm from the jet outlet. The wettability of 4 different titanium surfaces with plasma treatments was measured by the contact angle analysis. The water contact angles were significantly reduced especially for $O_2/He$ mixture plasma, which was explained with the optical emission spectroscopy. Consequently, plasma treatment enhances wettability of the titanium surface significantly within the operation time of tens of seconds, which is practically helpful for tooth implantation.

키워드

참고문헌

  1. A. West, M. van der Schans, C. Xu, M. Cooke, and E. Wagenaars, Plasma Sources Sci. Technol. 25, 02LT01 (2016). https://doi.org/10.1088/0963-0252/25/2/02LT01
  2. X. Lu, G. V. Naidis, M. Laroussi, S. Reuter, D. B. Graves, and K. Ostrikov, Phys. Reports 630, 1 (2016). https://doi.org/10.1016/j.physrep.2016.03.003
  3. J. Garcia-Torres, D. Sylla, L. Molina, E. Crespo, J. Mota, and L. Bautista, Appl. Surf. Sci. 305, 292 (2014). https://doi.org/10.1016/j.apsusc.2014.03.065
  4. J. H. Yim, V. Rodriguez-Santiago, A. A. Williams, T. Gougousi, D. D. Pappas, and J. K. Hirvonen, Surf. Coat. Technol. 234, 21 (2013). https://doi.org/10.1016/j.surfcoat.2013.03.028
  5. D. Mariotti, Appl. Phys. Lett. 92, 151505 (2008). https://doi.org/10.1063/1.2912039
  6. P. Chu, IEEE Trans. Plasma Sci. 35, 181 (2007). https://doi.org/10.1109/TPS.2006.888587
  7. G. Fridman, A. Brooks, M. Galasubramanian, A. Fridman, A. Gutsol, V. Vasilets, H. Ayan, and G. Friedman, Plasma Processes Polym. 4, 370 (2007). https://doi.org/10.1002/ppap.200600217
  8. J. Park, I. Henins, H. W. Herrman, G. S. Selwyn, and R. F. Hicks, J. Appl. Phys. 89, 20 (2001). https://doi.org/10.1063/1.1323753
  9. K. T. Rie, T. Stucky, R. A. Silva, E. Leitao, K. Bordji, J. Y. Jouzeau, and D. Mainard, Surface and Coatings Technology 74-75, 973-980 (1995). https://doi.org/10.1016/0257-8972(95)08316-2
  10. P. I. Branemark, B. O. Hansson, R. Adell, U. Breine, J. Lindstrom, O. Hallen, and A. Ohman, Scand. J. Plast. Reconstr. Surg. Suppl. 16, 1-132 (1977).
  11. T. Albrektsson, P. I Branemark, H. A. Hansson, and J. Lindstrom, Osseointegrated titanium implants anchorage in man (Springer-Verlag, London, 1981) p.155.
  12. C. Von Wilmowsky, S. Bauer, R. Lutz, M. Meisel, F. W. Neukam, T. Toyoshima, P. Schmuki, E. Nkenke, and K. A. Schlegel, J. Biomed. Mater. Res. B. 89, 165 (2009).
  13. S. Ponader, C. Von Wilmowsky, M. Widenmayer, R. Lutz, P. Heinl, C. Korener, R. F. Singer, E. Nkenke, F. W. Neukam, and K. A. Schlegel, J. Biomed. Mater. Res. A. 92, 56 (2010).
  14. G. Zhao, Z. Schwartz, M. Wieland, F Rupp, J. Geis-Gerstorfer, D. L. Cochran, and B. D. Boyan, J. Biomed. Mater. Res. A 74, 49-58 (2005).
  15. P. G. Coelho, G. Giro, H. S. Teixeira, C. Marin, L. Witek, V. P. Thompson, N. Tovar, and N. R. F. A. Silva, and J. Biomed. Mater. Res. A. 100, 1901 (2012).
  16. B. O. Aronsson, J. Lausmaa, and B. Kasemo, J. Biomed. Mater. Res. A. 35, 49 (1997). https://doi.org/10.1002/(SICI)1097-4636(199704)35:1<49::AID-JBM6>3.0.CO;2-M
  17. P. G. Coelho, C. Marin, R. Granato, G. Giro, M. Suzuki, and E. A. Bonfante, Clin. Oral. Implants. Res. 23, 132-135 (2012). https://doi.org/10.1111/j.1600-0501.2010.02147.x
  18. G. Giro, N. Tovar, L. Witek, C. Marin, N. R. F. Silva, E. A. Bonfante, and P. G. Coelho, J. Biomed. Mater. Res. A 101, 98-103 (2013).
  19. Y. Hirakawa, R. Jimbo, Y. Shibata, I. Watanabe, A. Wennerberg, and T. Sawase, Clin. Oral. Implants. Res. 24, 139-144 (2013). https://doi.org/10.1111/j.1600-0501.2011.02401.x
  20. R. Jimbo, D. Ono, Y. Hirakawa, T. Odatsu, T. Tanaka, and T. Sawase, Clin. Implant. Dent. Relat. Res. 13, 79-85 (2011). https://doi.org/10.1111/j.1708-8208.2009.00179.x
  21. G. C. Kim, H. W. Lee, J. H. Byun, J. Chung, Y. C. Jeon, and J. K. Lee, Plasma. Process. Polym. 10, 199-206 (2013). https://doi.org/10.1002/ppap.201200065
  22. R. E. J. Sladek, E. Stoffels, R. Walraven, P. J. A. Tielbeek, and R. A. Koolhoven, IEEE Trans. Plasma Sci. 32, 1540-1543 (2004). https://doi.org/10.1109/TPS.2004.832636
  23. C. Schanudinn, D. Jaramillo, M. O. Freire, P. P. Sedghizadeh, A. Nguyen, P. Webster, J. W. Costerton, and C. Jiang, Int. Endod. J. 46, 930-937 (2013). https://doi.org/10.1111/iej.12083
  24. T. Du, J. Ma, P. Yang, Z. Xiong, X. Lu, and Y. Cao, J. Endod. 38, 545-549 (2012). https://doi.org/10.1016/j.joen.2011.10.021
  25. A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, IEEE Trans. Plasma Sci. 26, 1685 (1998). https://doi.org/10.1109/27.747887
  26. M. Laroussi, IEEE Trans. Plasma Sci. 36, 1298 (2008). https://doi.org/10.1109/TPS.2008.922432
  27. E. Stoffels, A. J. Filkweert, W. W. Stoffels, and G. M. W. Kroesen, Plasma Sources Sci. Technol. 11, 383 (2002). https://doi.org/10.1088/0963-0252/11/4/304
  28. Q. Xiong, X. Lu, K. Ostrikov, Z. Xiong, Y. Xian, F. Zhou, C. Zou, J. Hu, W. Gong, and Z. Jiang, Phys. Plasmas 16, 043505 (2009). https://doi.org/10.1063/1.3119212
  29. K. H. Becker ,U. Kogelschatz, K. H. Schoenbach, and R. J. Barker, Non-Equilibrium Air Plasmas at Atmospheric Pressure (IOP, UK, 2005).
  30. N. Sakai, A. Fujishima, T. Watanabe, and K. Hashimoto, J Phys. Chem. B 105, 3023 (2001). https://doi.org/10.1021/jp003212r