References
- Brodin, F.W., Gregersen, O.W., Syverud, K. 2014. Cellulose Nanofibrils: Challenges and Possibilities As a Paper Additive or Coating Material - A Review. Nordic Pulp & Paper Research Journal 29(1): 156-166. https://doi.org/10.3183/NPPRJ-2014-29-01-p156-166
- Chang, F., Lee, S.H., Toba, K., Nagatani, A., Endo, T. 2012. Baboo Nanofiber Preparation by HCW and Grinding Treatment and its Application for Nanocomposite. Wood Science and Technology 46: 393-403. https://doi.org/10.1007/s00226-011-0416-0
- Eichhorn, S.J., Dufresne, A., Aranguren, M., Marcovich, N.E., Capadona, J.R., Rowan, S.J., Weder, C., Thielemans, W., Roman, M., Renneckar, S., Gindl, W., Veigel, S., Keckes, J., Yano, H., Abe, K., Nogi, M., Nakagaito, N., Mangalam, A., Simonsen, J., Benight, A.S., Bismarck, A., Berglund, L.A., Peijs, T. 2010. Review: Current International Research into Cellulose Nanofibres and Nanocomposites. Journal of Materials Science 45(1): 1-33. https://doi.org/10.1007/s10853-009-3874-0
- Jang, J.H., Lee, S.H., Endo, T., Kim, N.H. 2013. Characteristics of Microfibrillated Cellulosic Fibers and Paper Sheets from Korean White Pine. Wood Science and Technology 47(5): 925-937. https://doi.org/10.1007/s00226-013-0543-x
- Jang, J.H., Lee, S.H., Kim, N.H. 2015. Delignification Effect on Properties of Lignocellulose Nanofibers from Korean White Pine and Their Nanopapers. Journal of Korean Wood Science and Technology. 43(1): 9-16. https://doi.org/10.5658/WOOD.2015.43.1.9
- Kalia, S., Dufresne, A., Cherian, B.M., Kaith, B.S., Averous, L., Njuguna, J., Nassiopoulos, E. 2011. Cellulose-Based Bio-and Nanocomposites: A Review. International Journal of Polymer Science 2011. doi:10.1155/2011/837875.
- Klemm, D., Kramer, F., Morits, S., Lindstrom, T., Ankerfors, M., Gray, D., Dorris, A. 2011. Nanocelluloses: A New FAmily of Nature-Based Materials. Angew. CHem. Int. End. 50: 5438-5466. https://doi.org/10.1002/anie.201001273
- Lee, S.H., Chang, F., Inoue, S., Endo, T. 2010. Increase in Enzyme Accessibility by Generation of Nanospace in Cell Wall Supramolecular Structure. Bioresource Technology 101(19): 7218-7223. https://doi.org/10.1016/j.biortech.2010.04.069
- Lee, S.Y., Chun, S.J., Doh, G.H., Lee, S., Kim, B.H., Min, K.S., Kim, S.C., Huh, Y.S. 2011. Preparation of Cellulose Nanofibrils and Their Applications: High Strength Nanopapers and Polymer Composite Films. Mokchae Konghak 39(3): 197-205.
- Paakko, M., Ankerfors, M., Kosonen, H., Nykanen, A., Ahola, S., Osterberg, M., Ruokolainen, J., Laine, J., Larsson, P.T., Ikkala, O., Lindstrom, T. 2007. Enzymatic Hydrolysis Combined with Mechanical Shearing and High-Pressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels. Biomacromolecules 8: 1934-1941. https://doi.org/10.1021/bm061215p
- Park, C.W., Lee, S.H., Han, S.Y., Kim, B.Y., Jang, J.H., Kim, N.H., Lee, S.H. 2015. Effect of Different Delignification Degrees of Korean White Pine Wood on Fibrillation Efficiency and Tensile Properties of Nanopaper. Journal Korean Wood Science & Technology 43(1): 17-24. https://doi.org/10.5658/WOOD.2015.43.1.17
- Siro, I. and Plackett, D. 2010. Microfibrillated Cellulose and New Nanocomposite Materials: A Review. Cellulose 17: 459-494. https://doi.org/10.1007/s10570-010-9405-y
- Spence, K.L., Venditti, R.A., Habibi, Y., Rojas, O.J., Pawlak, J.J. 2010. The Effect of Chemical Composition on Microfibrillar Cellulose Films from Wood Pulps: Mechanical Processing and Physical Properties. Bioresource Technology 101: 5961-5968. https://doi.org/10.1016/j.biortech.2010.02.104