DOI QR코드

DOI QR Code

Size Fractionation of Cellulose Nanofibers by Settling Method and Their Morphology

셀룰로오스 나노섬유의 중력침강법에 의한 치수분획 및 형태학적 성질

  • Park, Chan-Woo (Division of Forest Materials Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University) ;
  • Han, Song-Yi (Division of Forest Materials Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University) ;
  • Lee, Seung-Hwan (Division of Forest Materials Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University)
  • 박찬우 (강원대학교 산림환경과학대학 산림바이오소재공학과) ;
  • 한송이 (강원대학교 산림환경과학대학 산림바이오소재공학과) ;
  • 이승환 (강원대학교 산림환경과학대학 산림바이오소재공학과)
  • Received : 2016.03.17
  • Accepted : 2016.04.23
  • Published : 2016.05.25

Abstract

The cellulose nanofibers (CNFs) were prepared by wet disk-milling (WDM) and fractionated by settling method into supernatant, middle and sediment fractions. The diameter and its distribution of the fractionated CNFs were investigated. With increasing WDM passing number, precipitation became delayed. Weight fraction at sediment fraction was decreased, whereas those at supernatant and middle fractions were increased with increasing WDM passing number. Diameter distribution of CNFs at supernatant fraction was narrowest and became broaden at middle and sediment fraction. Filtration time was longer in order of supernatant, middle and sediment fraction.

본 연구에서는 셀룰로오스 CNF의 치수별 분획 가능성 및 그 효율성을 평가하기 위하여, 기계적 해섬처리로 얻어진 CNF 수현탁액을 중력침강시켜 치수별 CNF를 분획하고 형태학적 성질 및 치수분포를 조사하였다. 침강속도는 해섬처리 횟수가 증가할수록 늦었으며, 침강 높이 또한 작았다. 침전층의 분획수율은 해섬처리 횟수가 증가하면서 감소하였으며, 중간층 및 상등액층은 증가하였다. 상등액 CNF의 직경 분포폭이 가장 좁았으며, 중간층 및 침전층으로 분포폭이 넓어졌다. 또한, 해섬처리 횟수가 증가할수록 직경 및 분포폭이 감소하였다. 여수시간은 상등액층, 중간층, 침전층 순서로 길게 나타났다.

Keywords

References

  1. Brodin, F.W., Gregersen, O.W., Syverud, K. 2014. Cellulose Nanofibrils: Challenges and Possibilities As a Paper Additive or Coating Material - A Review. Nordic Pulp & Paper Research Journal 29(1): 156-166. https://doi.org/10.3183/NPPRJ-2014-29-01-p156-166
  2. Chang, F., Lee, S.H., Toba, K., Nagatani, A., Endo, T. 2012. Baboo Nanofiber Preparation by HCW and Grinding Treatment and its Application for Nanocomposite. Wood Science and Technology 46: 393-403. https://doi.org/10.1007/s00226-011-0416-0
  3. Eichhorn, S.J., Dufresne, A., Aranguren, M., Marcovich, N.E., Capadona, J.R., Rowan, S.J., Weder, C., Thielemans, W., Roman, M., Renneckar, S., Gindl, W., Veigel, S., Keckes, J., Yano, H., Abe, K., Nogi, M., Nakagaito, N., Mangalam, A., Simonsen, J., Benight, A.S., Bismarck, A., Berglund, L.A., Peijs, T. 2010. Review: Current International Research into Cellulose Nanofibres and Nanocomposites. Journal of Materials Science 45(1): 1-33. https://doi.org/10.1007/s10853-009-3874-0
  4. Jang, J.H., Lee, S.H., Endo, T., Kim, N.H. 2013. Characteristics of Microfibrillated Cellulosic Fibers and Paper Sheets from Korean White Pine. Wood Science and Technology 47(5): 925-937. https://doi.org/10.1007/s00226-013-0543-x
  5. Jang, J.H., Lee, S.H., Kim, N.H. 2015. Delignification Effect on Properties of Lignocellulose Nanofibers from Korean White Pine and Their Nanopapers. Journal of Korean Wood Science and Technology. 43(1): 9-16. https://doi.org/10.5658/WOOD.2015.43.1.9
  6. Kalia, S., Dufresne, A., Cherian, B.M., Kaith, B.S., Averous, L., Njuguna, J., Nassiopoulos, E. 2011. Cellulose-Based Bio-and Nanocomposites: A Review. International Journal of Polymer Science 2011. doi:10.1155/2011/837875.
  7. Klemm, D., Kramer, F., Morits, S., Lindstrom, T., Ankerfors, M., Gray, D., Dorris, A. 2011. Nanocelluloses: A New FAmily of Nature-Based Materials. Angew. CHem. Int. End. 50: 5438-5466. https://doi.org/10.1002/anie.201001273
  8. Lee, S.H., Chang, F., Inoue, S., Endo, T. 2010. Increase in Enzyme Accessibility by Generation of Nanospace in Cell Wall Supramolecular Structure. Bioresource Technology 101(19): 7218-7223. https://doi.org/10.1016/j.biortech.2010.04.069
  9. Lee, S.Y., Chun, S.J., Doh, G.H., Lee, S., Kim, B.H., Min, K.S., Kim, S.C., Huh, Y.S. 2011. Preparation of Cellulose Nanofibrils and Their Applications: High Strength Nanopapers and Polymer Composite Films. Mokchae Konghak 39(3): 197-205.
  10. Paakko, M., Ankerfors, M., Kosonen, H., Nykanen, A., Ahola, S., Osterberg, M., Ruokolainen, J., Laine, J., Larsson, P.T., Ikkala, O., Lindstrom, T. 2007. Enzymatic Hydrolysis Combined with Mechanical Shearing and High-Pressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels. Biomacromolecules 8: 1934-1941. https://doi.org/10.1021/bm061215p
  11. Park, C.W., Lee, S.H., Han, S.Y., Kim, B.Y., Jang, J.H., Kim, N.H., Lee, S.H. 2015. Effect of Different Delignification Degrees of Korean White Pine Wood on Fibrillation Efficiency and Tensile Properties of Nanopaper. Journal Korean Wood Science & Technology 43(1): 17-24. https://doi.org/10.5658/WOOD.2015.43.1.17
  12. Siro, I. and Plackett, D. 2010. Microfibrillated Cellulose and New Nanocomposite Materials: A Review. Cellulose 17: 459-494. https://doi.org/10.1007/s10570-010-9405-y
  13. Spence, K.L., Venditti, R.A., Habibi, Y., Rojas, O.J., Pawlak, J.J. 2010. The Effect of Chemical Composition on Microfibrillar Cellulose Films from Wood Pulps: Mechanical Processing and Physical Properties. Bioresource Technology 101: 5961-5968. https://doi.org/10.1016/j.biortech.2010.02.104