Acknowledgement
Supported by : National Science Foundation of China
References
- Akaike, H. (1974), "A new look at the statistical model identification", IEEE T. Automat. Contr., 19(6), 716-723. https://doi.org/10.1109/TAC.1974.1100705
- Caprani, C.C. (2012), "Calibration of a congestion load model for highway bridges using traffic microsimulation", Struct. Eng. Int., 22(3), 342-348. https://doi.org/10.2749/101686612X13363869853455
- Caprani, C.C., O'Brien, E.J. and McLachlan, G.J. (2008), "Characteristic traffic load effects from a mixture of loading events on short to medium span bridges", Struct. Saf., 30(5), 394-404. https://doi.org/10.1016/j.strusafe.2006.11.006
- Chan, T. H., Miao, T.J. and Ashebo, D.B. (2005), "Statistical models from weigh-in-motion data", Struct. Eng. Mech., 20(1), 85-110. https://doi.org/10.12989/sem.2005.20.1.085
- Franko, M. and Nagode, M. (2015), "Probability density function of the equivalent stress amplitude using statistical transformation", Reliab. Eng. Syst. Safe, 134, 118-125. https://doi.org/10.1016/j.ress.2014.10.012
- Holland, J.H. (1975), Adaptation in Natural and Artificial System, The University of Michigan Press, Ann Arbor, USA.
- Isaia, A.D.E.D. (2007), "A quick procedure for model selection in the case of mixture of normal densities", Comput. Stat. Data An., 51(12), 5635-5643. https://doi.org/10.1016/j.csda.2007.05.023
- Kwon, K. and Frangopol, D.M. (2010), "Bridge fatigue reliability assessment using probability density functions of equivalent stress range based on field monitoring data", Int. J. Fatigue., 32(8), 1221-1232. https://doi.org/10.1016/j.ijfatigue.2010.01.002
- Lan, C., Li, H. and Ou, J.P. (2011), "Traffic load modelling based on structural health monitoring data", Struct. Infrastruct. E., 7(5), 379-386. https://doi.org/10.1080/15732470902726809
- McLachlan, G.J. and Peel, D. (2000), Finite Mixture Models, Wiley, New York, USA.
- Mei, G., Qin, Q. and Lin, D.J. (2004), "Bimodal renewal processes models of highway vehicle loads", Reliab. Eng. Syst. Safe, 83(3), 333-339. https://doi.org/10.1016/j.ress.2003.10.002
- Miao, T.J. and Chan, T.H. (2002), "Bridge live load models from WIM data", Eng. Struct., 24(8), 1071-1084. https://doi.org/10.1016/S0141-0296(02)00034-2
- Nagode, M. and Fajdiga, M. (2011), "The rebmix algorithm for the multivariate finite mixture estimation", Commun. Stat-Theor. M., 40(11), 2022-2034.
- Ni, Y.Q., Ye, X.W. and Ko, J.M. (2010), "Monitoring-based fatigue reliability assessment of steel bridges: analytical model and application", J. Struct. Eng.-ASCE, 136(12), 1563-1573. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000250
- Ni, Y.Q., Ye, X.W. and Ko, J.M. (2012), "Modeling of stress spectrum using long-term monitoring data and finite mixture distributions", J. Eng. Mech.-ASCE, 138(2), 175-183. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000313
- Nowak, A.S. (1993), "Live load model for highway bridges", Struct. Saf., 13(1), 53-66. https://doi.org/10.1016/0167-4730(93)90048-6
- O'Brien, E.J. and Enright, B. (2011), "Modeling same-direction two-lane traffic for bridge loading", Struct. Saf., 33(4), 296-304. https://doi.org/10.1016/j.strusafe.2011.04.004
- O'Brien, E.J., and Enright, B. (2012), "Using weigh-in-motion data to determine aggressiveness of traffic for bridge loading", J. Bridge. Eng.-ASCE, 18(3), 232-239.
- O'Connor, A. and O'Brien, E.J. (2005), "Traffic load modelling and factors influencing the accuracy of predicted extremes", Can. J. Civil. Eng., 32(1), 270-278. https://doi.org/10.1139/l04-092
- Richardson, S. and Green, P.J. (1997), "On Bayesian analysis of mixtures with an unknown number of components", J. R. Stat. Soc. B., 59(4), 731-792. https://doi.org/10.1111/1467-9868.00095
- Sankararaman, S. and Mahadevan, S. (2015), "Integration of model verification, validation, and calibration for uncertainty quantification in engineering systems", Reliab. Eng. Syst. Safe., 138, 194-209. https://doi.org/10.1016/j.ress.2015.01.023
- Timm, D.H., Tisdale, S.M. and Turochy, R.E. (2005), "Axle load spectra characterization by mixed distribution modeling", J. Transp. Eng., 131(2), 83-88. https://doi.org/10.1061/(ASCE)0733-947X(2005)131:2(83)
- Titterington D.M., Smith A.F.M. and Makov U.E. (1985) Statistical Analysis of Finite Mixture Distribution, Wiley, New York, USA.
- Volk, M., Nagode, M. and Fajdiga, M. (2012), "Finite mixture estimation algorithm for arbitrary function approximation", Stroj. Vestn-J. Mech. E., 58(2), 115-124. https://doi.org/10.5545/sv-jme.2011.085
- Ye, X.W., Ni, Y.Q., Wong, K.Y. and Ko, J.M. (2012), "Statistical analysis of stress spectra for fatigue life assessment of steel bridges with structural health monitoring data", Eng. Struct., 45, 166-176. https://doi.org/10.1016/j.engstruct.2012.06.016
- Ye, X.W., Ni, Y.Q., Wai, T.T., Wong, K.Y., Zhang, X.M. and Xu, F. (2013), "A vision-based system for dynamic displacement measurement of long-span bridges: algorithm and verification", Smart Struct. Syst., 12(3-4), 363-379. https://doi.org/10.12989/sss.2013.12.3_4.363
- Ye, X.W., Yi, T.H., Dong, C.Z., Liu, T. and Bai, H. (2015), "Multi-point displacement monitoring of bridges using a vision-based approach", Wind Struct., 20(2), 315-326. https://doi.org/10.12989/was.2015.20.2.315
- Zhou, X.Y., Treacy, M., Schmidt, F., Bruhwiler, E., Toutlemonde, F. and Jacob, B. (2015), "Effect on bridge load effects of vehicle transverse in-lane position: a case study", J. Bridge. Eng.- ASCE, 20(12), 04015020. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000763
Cited by
- A Review of Machine Vision-Based Structural Health Monitoring: Methodologies and Applications vol.2016, 2016, https://doi.org/10.1155/2016/7103039
- A probabilistic analysis of Miner's law for different loading conditions vol.60, pp.1, 2016, https://doi.org/10.12989/sem.2016.60.1.071
- Analysis of non-stationary wind characteristics at an arch bridge using structural health monitoring data vol.7, pp.4, 2017, https://doi.org/10.1007/s13349-017-0244-5
- Strain-based structural condition assessment of an instrumented arch bridge using FBG monitoring data vol.20, pp.2, 2016, https://doi.org/10.12989/sss.2017.20.2.139
- Development of a double-sliding friction damper (DSFD) vol.20, pp.2, 2016, https://doi.org/10.12989/sss.2017.20.2.151
- Grouting compactness monitoring of concrete-filled steel tube arch bridge model using piezoceramic-based transducers vol.20, pp.2, 2016, https://doi.org/10.12989/sss.2017.20.2.175
- Structural health monitoring-based dynamic behavior evaluation of a long-span high-speed railway bridge vol.20, pp.2, 2016, https://doi.org/10.12989/sss.2017.20.2.197
- Probabilistic structural damage detection approaches based on structural dynamic response moments vol.20, pp.2, 2017, https://doi.org/10.12989/sss.2017.20.2.207
- Outlier detection of GPS monitoring data using relational analysis and negative selection algorithm vol.20, pp.2, 2016, https://doi.org/10.12989/sss.2017.20.2.219
- Interaction analysis of Continuous Slab Track (CST) on long-span continuous high-speed rail bridges vol.63, pp.6, 2017, https://doi.org/10.12989/sem.2017.63.6.713
- Analysis and probabilistic modeling of wind characteristics of an arch bridge using structural health monitoring data during typhoons vol.63, pp.6, 2016, https://doi.org/10.12989/sem.2017.63.6.809
- Structural health monitoring data reconstruction of a concrete cable-stayed bridge based on wavelet multi-resolution analysis and support vector machine vol.20, pp.5, 2016, https://doi.org/10.12989/cac.2017.20.5.555
- Structural performance monitoring of an urban footbridge vol.5, pp.1, 2016, https://doi.org/10.12989/smm.2018.5.1.129
- SHM-based probabilistic representation of wind properties: statistical analysis and bivariate modeling vol.21, pp.5, 2016, https://doi.org/10.12989/sss.2018.21.5.591
- A completely non-contact recognition system for bridge unit influence line using portable cameras and computer vision vol.24, pp.5, 2019, https://doi.org/10.12989/sss.2019.24.5.617
- Machine learning approaches for wind speed forecasting using long-term monitoring data: a comparative study vol.24, pp.6, 2016, https://doi.org/10.12989/sss.2019.24.6.733
- Test on the anchoring components of steel shear keys in precast shear walls vol.24, pp.6, 2019, https://doi.org/10.12989/sss.2019.24.6.783
- Forecast of Thunderstorm Cloud Trend Based on Monitoring Data of Thunder Mobile Positioning System vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/8062549
- Integrated Fatigue Life Evaluation Method for Members in Riveted Steel Truss Bridges vol.35, pp.4, 2016, https://doi.org/10.1061/(asce)cf.1943-5509.0001601