• Title/Summary/Keyword: mixture parameter estimation

Search Result 59, Processing Time 0.024 seconds

Estimation in Mixture of Shifted Poisson Distributions

  • Oh, Chang-Hyuck
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.4
    • /
    • pp.1209-1217
    • /
    • 2006
  • For the mixture of shifted Poisson distributions, a method of parameter estimation is proposed. The range of the shifted parameters are estimated first and for each shifted parameter set EM algorithm is applied to estimate the other parameters of the distribution. Among the estimated parameter sets, one with minimum likelihood for given data is to be set as the final estimate. In simulation experiments, the suggested estimation method shows to have a good performance.

  • PDF

Effective Parameter Estimation of Bernoulli-Gaussian Mixture Model and its Application to Image Denoising (베르누이-가우스 혼합 모델의 효과적인 파라메터 추정과 영상 잡음 제거에 응용)

  • Eom, Il-Kyu;Kim, Yoo-Shin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.47-54
    • /
    • 2005
  • In general, wavelet coefficients are composed of a few large coefficients and a lot of small coefficients. In this paper, we propose image denoising algorithm using Bernoulli-Gaussian mixture model based on sparse characteristic of wavelet coefficient. The Bernoulli-Gaussian mixture is composed of the multiplication of Bernoulli random variable and Gaussian mixture random variable. The image denoising is performed by using Bayesian estimation. We present an effective denoising method through simplified parameter estimation for Bernoulli random variable using local expected squared error. Simulation results show our method outperforms the states-of-art denoising methods when using orthogonal wavelets.

Estimation of Mixture Numbers of GMM for Speaker Identification (화자 식별을 위한 GMM의 혼합 성분의 개수 추정)

  • Lee, Youn-Jeong;Lee, Ki-Yong
    • Speech Sciences
    • /
    • v.11 no.2
    • /
    • pp.237-245
    • /
    • 2004
  • In general, Gaussian mixture model(GMM) is used to estimate the speaker model for speaker identification. The parameter estimates of the GMM are obtained by using the expectation-maximization (EM) algorithm for the maximum likelihood(ML) estimation. However, if the number of mixtures isn't defined well in the GMM, those parameters are obtained inappropriately. The problem to find the number of components is significant to estimate the optimal parameter in mixture model. In this paper, to estimate the optimal number of mixtures, we propose the method that starts from the sufficient mixtures, after, the number is reduced by investigating the mutual information between mixtures for GMM. In result, we can estimate the optimal number of mixtures. The effectiveness of the proposed method is shown by the experiment using artificial data. Also, we performed the speaker identification applying the proposed method comparing with other approaches.

  • PDF

Statistical analysis and probabilistic modeling of WIM monitoring data of an instrumented arch bridge

  • Ye, X.W.;Su, Y.H.;Xi, P.S.;Chen, B.;Han, J.P.
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.1087-1105
    • /
    • 2016
  • Traffic load and volume is one of the most important physical quantities for bridge safety evaluation and maintenance strategies formulation. This paper aims to conduct the statistical analysis of traffic volume information and the multimodal modeling of gross vehicle weight (GVW) based on the monitoring data obtained from the weigh-in-motion (WIM) system instrumented on the arch Jiubao Bridge located in Hangzhou, China. A genetic algorithm (GA)-based mixture parameter estimation approach is developed for derivation of the unknown mixture parameters in mixed distribution models. The statistical analysis of one-year WIM data is firstly performed according to the vehicle type, single axle weight, and GVW. The probability density function (PDF) and cumulative distribution function (CDF) of the GVW data of selected vehicle types are then formulated by use of three kinds of finite mixed distributions (normal, lognormal and Weibull). The mixture parameters are determined by use of the proposed GA-based method. The results indicate that the stochastic properties of the GVW data acquired from the field-instrumented WIM sensors are effectively characterized by the method of finite mixture distributions in conjunction with the proposed GA-based mixture parameter identification algorithm. Moreover, it is revealed that the Weibull mixture distribution is relatively superior in modeling of the WIM data on the basis of the calculated Akaike's information criterion (AIC) values.

Optimal Restrictions on Regression Parameters For Linear Mixture Model

  • Ahn, Jung-Yeon;Park, Sung-Hyun
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.3
    • /
    • pp.325-336
    • /
    • 1999
  • Collinearity among independent variables can have severe effects on the precision of response estimation for some region of interest in the experiments with mixture. A method of finding optimal linear restriction on regression parameter in linear model for mixture experiments in the sense of minimizing integrated mean squared error is studied. We use the formulation of optimal restrictions on regression parameters for estimating responses proposed by Park(1981) by transforming mixture components to mathematically independent variables.

  • PDF

Dependence structure analysis of KOSPI and NYSE based on time-varying copula models

  • Lee, Sangyeol;Kim, Byungsoo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1477-1488
    • /
    • 2013
  • In this study, we analyze the dependence structure of KOSPI and NYSE indices based on a two-step estimation procedure. In the rst step, we adopt ARMA-GARCH models with Gaussian mixture innovations for marginal processes. In the second step, time-varying copula parameters are estimated. By using these, we measure the dependence between the two returns with Kendall's tau and Spearman's rho. The two dependence measures for various copulas are illustrated.

Dirichlet Process Mixtures of Linear Mixed Regressions

  • Kyung, Minjung
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.6
    • /
    • pp.625-637
    • /
    • 2015
  • We develop a Bayesian clustering procedure based on a Dirichlet process prior with cluster specific random effects. Gibbs sampling of a normal mixture of linear mixed regressions with a Dirichlet process was implemented to calculate posterior probabilities when the number of clusters was unknown. Our approach (unlike its counterparts) provides simultaneous partitioning and parameter estimation with the computation of the classification probabilities. A Monte Carlo study of curve estimation results showed that the model was useful for function estimation. We find that the proposed Dirichlet process mixture model with cluster specific random effects detects clusters sensitively by combining vague edges into different clusters. Examples are given to show how these models perform on real data.

Paper Title : Speech Parameter Estimation and Enhancement Using the EM Algorithm (EM 알고리즘을 이용한 음성 파라미터 추정 및 향상)

  • Lee, Ki-Yong;Kang, Young-Tae;Lee, Byung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.2E
    • /
    • pp.68-75
    • /
    • 1994
  • In many applications of signal processing, we have to deal with densities which are highly non-Gaussian or which may have Gaussian shape in the middle but have potent deviations in the tails. To fight against these deviations, we consider a finite mixture distribution for the speech excitation. We utilize the EM algorithm for the estimation of speech parameters and their enhancement. Robust Kalman filtering is used in the enhancement process, and a detection/estimation technique is used for parameter estimation. Experimental results show that the proposed algorithm performs better in adverse SNR input conditions.

  • PDF

Pattern-Mixture Model of the Cox Proportional Hazards Model with Missing Binary Covariates (결측이 있는 이산형 공변량에 대한 Cox비례위험모형의 패턴-혼합 모델)

  • Youk, Tae-Mi;Song, Ju-Won
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.2
    • /
    • pp.279-291
    • /
    • 2012
  • When fitting a Cox proportional hazards model with missing covariates, it is inefficient to exclude observations with missing values in the analysis. Furthermore, if the missing-data mechanism is not Missing Completely At Random(MCAR), it may lead to biased parameter estimation. Many approaches have been suggested to handle the Cox proportional hazards model when covariates are sometimes missing, but they are based on the selection model. This paper suggest an approach to handle Cox proportional hazards model with missing covariates by using the pattern-mixture model (Little, 1993). The pattern-mixture model is expressed by the joint distribution of survival time and the missing-data mechanism. In the pattern-mixture model, many models can be considered by setting up various restrictions, and different results under various restrictions indicate the sensitivity of the model due to missing covariates. A simulation study was conducted to show the sensitivity of parameter estimation under different restrictions in a pattern-mixture model. The proposed approach was also applied to mouse leukemia data.

An approximate fitting for mixture of multivariate skew normal distribution via EM algorithm (EM 알고리즘에 의한 다변량 치우친 정규분포 혼합모형의 근사적 적합)

  • Kim, Seung-Gu
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.3
    • /
    • pp.513-523
    • /
    • 2016
  • Fitting a mixture of multivariate skew normal distribution (MSNMix) with multiple skewness parameter vectors via EM algorithm often requires a highly expensive computational cost to calculate the moments and probabilities of multivariate truncated normal distribution in E-step. Subsequently, it is common to fit an asymmetric data set with MSNMix with a simple skewness parameter vector since it allows us to compute them in E-step in an univariate manner that guarantees a cheap computational cost. However, the adaptation of a simple skewness parameter is unrealistic in many situations. This paper proposes an approximate estimation for the MSNMix with multiple skewness parameter vectors that also allows us to treat them in an univariate manner. We additionally provide some experiments to show its effectiveness.