DOI QR코드

DOI QR Code

Investigation of Learning Progression for Dissolution and Solution Concepts

용해와 용액 개념에 대한 학습발달과정 조사

  • Received : 2016.03.11
  • Accepted : 2016.03.28
  • Published : 2016.04.30

Abstract

In this study, we investigated a learning progression focusing on $5^{th}$ to $9^{th}$ graders' performances with dissolution and solution concepts using the construct modeling approach. We designed a construct map describing hypothetical pathways of the concept development of dissolution and solution by analyzing both National Science Curricula and related studies. A conceptions test consisting of ordered multiple-choice items was developed and administered to 826 students. A revised construct map was derived from analyses of the results based on the partial credit model, a branch of polytomous item response theory. The sequence of dissolution and solution concepts presented in the current science curriculum was found to correspond with the learning progression of the students. However, the lower anchor, the concept of the homogeneity of particles in solution, and the factors affecting solubility were not consistent with the expected levels of the construct map. After revising the construct map, we proposed a learning progression for dissolution and solution concepts with five levels: Students of level 1 (the lower anchor) recognize the particles in the solution but misunderstand various concepts; Students of level 2 understand the homogeneity of particles in solution; Students of level 3 understand solubility and the conservation of particles during dissolution; Students of level 4 partially understand the interaction between particles; and Students of level 5 (the upper anchor) understand the interaction between particles and the factors affecting solubility.

이 연구에서는 구인 모델링 방식을 적용하여 초등학교 5학년~중학교 3학년 학생들의 용해와 용액 개념에 대한 학습발달과정을 조사하였다. 이를 위해 현행 교육과정과 선행연구를 분석하여 용해와 용액 개념 이해의 가설적 발달 경로인 초기 구인 구성도를 설정하였고, 이를 바탕으로 순위정렬 선다형 평가 문항으로 구성된 검사지를 제작하였다. 826명의 학생들을 대상으로 검사를 실시하였으며, 다분 문항반응이론의 모형 중 부분 점수 모형을 활용하여 분석한 결과를 바탕으로 구인 구성도를 수정하였다. 연구 결과, 현행 교육과정에서 학년에 따른 용해와 용액 개념의 제시 순서는 대체로 학생들의 학습발달과정에 부합하는 것으로 나타났다. 그러나 하위 정착점과 용액에서 입자의 균일 분포 개념, 용해도에 영향을 미치는 요인에 대한 이해는 구인 구성도를 통해 이론적으로 예상한 수준과 달랐다. 수정된 구인 구성도에 따라 초 중등학생의 용해와 용액 개념에 대한 학습발달과정을 도출하였다. 하위정착점인 수준 1은 용해와 용액을 입자 관점에서 인식할 수 있으나 다양한 오개념을 지니는 수준으로, 수준 2는 용액에서 입자의 균일 분포 개념을 이해하는 수준으로, 수준 3은 용해도와 입자의 보존 개념을 이해하는 수준으로 설정되었다. 또한, 수준 4는 입자간 인력을 인식할 수 있으나 다양한 오개념을 지니는 수준으로, 상위정착점인 수준 5는 입자간 인력과 용해도에 영향을 미치는 요인을 이해하는 수준으로 설정되었다.

Keywords

References

  1. Alonzo, A. C., & Steedle, J. T. (2009). Developing and assessing a force and motion learning progression. Science Education, 93(3), 389-421. https://doi.org/10.1002/sce.20303
  2. Briggs, D. C., Alonzo, A. C., Schwab, C., & Wilson, M. (2006). Diagnostic assessment with ordered multiple-choice items. Educational Assessment, 11(1), 33-63. https://doi.org/10.1207/s15326977ea1101_2
  3. Corcoran, T., Mosher, F. A., & Rogat, A. (2009). Learning progressions in science: An evidence-based approach to reform (Consortium for Policy Research in Education Report #RR-63). Philadelphia, PA: Consortium for Policy Research in Education.
  4. Furtak, E. M. (2012). Linking a learning progression for natural selection to teachers' enactment of formative assessment. Journal of Research in Science Teaching, 49(9), 1181-1210. https://doi.org/10.1002/tea.21054
  5. Johnstone, A. H. (1999). The nature of chemistry. Education in Chemistry, 36(2), 45-48.
  6. Kang, C., & Yun, S. (2007). An analysis of the first to second grade elementary school children's cognitive development levels and implications for the elementary school curriculum. The Journal of Elementary Education Studies, 14(2), 77-97.
  7. Kang, D.-H., Paik, S.-H., & Park, K.-T. (2001). A study on middle school students' understanding of dissolution. Journal of the Korean Chemical Society, 45(1), 132-138.
  8. Kang, D.-H., Paik, S.-H., & Park, K.-T. (2004). The patterns of students' conceptions and teachers' teaching practices on dissolution. Journal of the Korean Chemical Society, 48(4), 399-413. https://doi.org/10.5012/jkcs.2004.48.4.399
  9. Kang, S., Bang, D., & Kim, S.-J. (2012). Analysis of the level of cognitive demands about concepts of elements, the periodic table, and atoms on Science 2 textbooks in junior high school (I). Journal of the Korean Chemical Society, 56(4), 518-529. https://doi.org/10.5012/jkcs.2012.56.4.518
  10. Kim, S.-S., Park, S.-Y., Jung, M.-H., Ryu, S.-M., Kang, S.-J., & Park, K.-T. (2009). A comparative analysis of the cognitive level of 10th grade students and the content level of high school science textbook's matter unit and perception of teachers. Korean Journal of Teacher Education, 25(4), 152-167.
  11. Letcher, T. M., & Battino, R. (2001). An introduction to the understanding of solubility. Journal of Chemical Education, 78(1), 103-111. https://doi.org/10.1021/ed078p103
  12. Maeng, S., & Lee, K. (2015). Cross-sectional item response analysis of geocognition assessment for the development of plate tectonics learning progressions: Rasch model. Journal of the Korean Association for Science Education, 35(1), 37-52. https://doi.org/10.14697/jkase.2015.35.1.0037
  13. Maeng, S., Lee, K., Park, Y.-S., Lee, J.-A., & Oh, H. (2014). Development and validation of a learning progression for astronomical systems using ordered multiple-choice items. Journal of the Korean Association for Science Education, 34(8), 703-718. https://doi.org/10.14697/jkase.2014.34.8.0703
  14. Maeng, S., Seong, Y., & Jang, S. (2013). Present states, methodological features, and an exemplar study of the research on learning progressions. Journal of the Korean Association for Science Education, 33(1), 161-180. https://doi.org/10.14697/jkase.2013.33.1.161
  15. Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149-174. https://doi.org/10.1007/BF02296272
  16. National Research Council (NRC) (2001). Knowing what students know: The science and design of educational assessment. Washington, DC: National Academy Press.
  17. National Research Council (NRC) (2006). Systems for state science assessment. Washington, DC: National Academy Press.
  18. National Research Council (NRC) (2007). Taking science to school. Washington, DC: The National Academies Press.
  19. Noh, K.-J., & Kim, H.-N. (1996). Elementary school children's conceptions about dissolution according to scientific and everyday context. Journal of Korean Elementary Science Education, 15(2), 233-250.
  20. Paik, N.-J. (2006). Specification of statements on educational contents in the subject curriculum. The Journal of Curriculum Studies, 24(2), 207-233.
  21. Park, J. (2001). Polytomous item response theory model. Seoul: Kyoyookbook.
  22. Park, J.-Y., & Lee, Y.-H. (2008). Identification of college students' understanding of the thermodynamic aspects regarding the dissolution of solids and gases. Journal of the Korean Chemical Society, 52(2), 186-196. https://doi.org/10.5012/jkcs.2008.52.2.186
  23. Plummer, J. D., & Krajcik, J. (2010). Building a learning progression for celestial motion: Elementary levels from an earth-based perspective. Journal of Research in Science Teaching, 47(7), 768-787. https://doi.org/10.1002/tea.20355
  24. Seong, T.-J. (2001). Understanding and application of item response theory. Seoul: Kyoyookbook.
  25. Seong, Y., Maeng, S., & Jang, S. (2013). A learning progression for water cycle from fourth to sixth graders with ordered multiple-choice items. Journal of Korean Elementary Science Education, 32(2), 139-158.
  26. Shin, N., Koh, E. J., Choi, C. I., & Jeong, D. H. (2014). Using a learning progression to characterize Korean secondary students' knowledge and submicroscopic representations of the particle nature of matter. Journal of the Korean Association for Science Education, 34(5), 437-447. https://doi.org/10.14697/jkase.2014.34.5.0437
  27. Song, S.-H., Park, K.-S., Kim, D.-J., Kim, E.-S., & Park, K.-T. (2005). A comparative analysis of contents levels required by high school Chemistry II textbooks by the 7th national education curriculum and cognitive levels of 12th grade students. Journal of the Korean Chemical Society, 49(1), 96-104. https://doi.org/10.5012/jkcs.2005.49.1.096
  28. Stevens, S. Y., Delgado, C., & Krajcik, J. S. (2010). Developing a hypothetical multi-dimensional learning progression for the nature of matter. Journal of Research in Science Teaching, 47(6), 687-715.
  29. Wilson, M. (2005). Constructing measures: An item response modeling approach. Mahwah, NJ: Lawrence Erlbaum Associates.
  30. Wilson, M. (2009). Measuring progressions: Assessment structures underlying a learning progression. Journal of Research in Science Teaching, 46(6), 716-730. https://doi.org/10.1002/tea.20318
  31. Wiser, M., Smith, C. L., & Doubler, S. (2012). Learning progression as tools for curriculum development: Lessons from the Inquiry project. In A. C. Alonzo, & A. W. Gotwals (Eds.), Learning progressions in science: Current challenges and future directions (pp. 359-403). Rotterdam: Sense Publishers, The Netherlands.
  32. Won, J.-A., Lee, E.-K., & Paik, S.-H. (2008). Analysis of content structure problems through the textbooks of the elementary and middle school science and students' and teachers' perceptions on dissolution, light, and electricity units in the 7th National Science Curriculum. Korean Journal of Teacher Education, 24(4), 318-343.
  33. Yang, C., Noh, T., Scharmann, L. C., & Kang, S. (2014). A study on the elementary school teachers' awareness of students' alternative conceptions about change of states and dissolution. The Asia-Pacific Education Researcher, 23(3), 683-698. https://doi.org/10.1007/s40299-013-0140-7

Cited by

  1. 기초공통개념으로서 에너지에 대한 3~9학년 학생들의 문항 반응 분석 vol.36, pp.6, 2016, https://doi.org/10.14697/jkase.2016.36.6.0815
  2. 물질의 특성에 대한 중학생의 거시적 개념과 미시적 개념의 비교 vol.62, pp.3, 2018, https://doi.org/10.5012/jkcs.2018.62.3.243
  3. 지구의 공전과 별자리의 겉보기 운동에 대한 초등학생들의 공간적 추론 발달 경로의 사례 연구 vol.38, pp.4, 2016, https://doi.org/10.14697/jkase.2018.38.4.481
  4. 고등학생들의 통합 탐구 기능 향상을 위한 인지적 스캐폴딩 도구 개발 및 적용 vol.39, pp.4, 2016, https://doi.org/10.14697/jkase.2019.39.4.545
  5. Understanding about Dissolution and Solution of Pre-service Elementary School Teachers vol.32, pp.1, 2016, https://doi.org/10.13000/jfmse.2020.2.32.1.133
  6. 물질의 입자성 개념에서 증강현실을 활용한 다중 표상 학습 전략의 개발과 적용 vol.40, pp.4, 2020, https://doi.org/10.14697/jkase.2020.40.4.375