DOI QR코드

DOI QR Code

Contextualized Nature of Technology in Socioscientific Issues

대학생들의 과학기술관련 사회쟁점(SSI) 논의에서 기술의 본성(NOT)은 어떻게 나타나는가?

  • Received : 2016.01.25
  • Accepted : 2016.04.18
  • Published : 2016.04.30

Abstract

Socioscientific issues (SSI), by their nature, are conceptually embedded in technology. Previous research reported that nature of technology (NOT), unlike nature of science, was quite explicitly manifested in SSI decision-making, and NOT could be a promising construct for promoting SSI reasoning. In this study, authors introduced an integrated conceptual framework for NOT, which consisted of four dimensions (i.e., artifacts, knowledge, practice and system) as diverse modes of technology. We adapted the framework to investigate students' conceptualizations of NOT in the context of various SSIs. Data was collected from 45 college students enrolled in a liberal arts course on science and technology. The students participated in a team project, where they prepared and led discussions for SSI topics in class. Seven topics concerning SSIs were selected by students themselves. The preparation and class discussion of each student group were audio-recorded, and final reports were also analyzed. As a result, NOT sub-components in the dimensions of artifacts and system were explicitly represented in most contexts of SSI with various ranges of understanding. Other sub-components under the dimensions of knowledge and practice were rarely or implicitly shown in the discussion. The depth of students' understanding on NOT varied. Implications for science education were discussed.

본 연구는 다양한 과학기술관련 사회쟁점(SSI)에 대한 논의과정에서 기술의 본성(NOT)이 어떻게 나타나는지를 분석하여 SSI 교육 및 과학교육에서 NOT의 연계성 및 역할을 제안하는 것을 목적으로 한다. 원자력 발전소 건설 및 사고, 유전자재조합식품, 우주 개발과 같은 다양한 SSI 사례를 살펴보면 개념적으로 과학과 함께 기술이 연계되어 있다는 것을 알 수 있다. 또한, 연구자는 선행연구에서 초기 형태의 NOT를 구성하여 유전자재조합식품에 관련된 SSI 의사결정에서 NOS보다는 일부 NOT 요소가 명시적으로 나타난다는 결과를 확인한 바 있다. 이를 기반으로 하여 본 연구에서는 과학기술과 연관된 다양한 SSI 맥락을 도입하였고, 연구자가 개발한 통합적 NOT 개념틀을 채택하여 체계적인 분석을 시도 하였다. 해당 NOT에서는 기술의 다양한 존재 양식을 보여주는 인공물(artifacts), 지식(knowledge), 실행(practice) 그리고 시스템(system)이라는 4 가지 차원을 도입하였는데, 이러한 통합적인 접근을 반영한 NOT는 학생들의 다양한 SSI추론을 포착하고 분석하기에 적절하였다. 서울 소재 대학교의 교양수업 커리큘럼으로 모둠별로 SSI를 선정하여 수업에서 전체 토의 및 토론을 이끄는 과제를 제시하였는데, 대학생 45명이 참여하여 총 7 가지 SSI 주제를 구성하여 발표 하였다. 그 과정에서 다양한 SSI 추론 자료를 수집하였고, 학생들이 어떤 NOT 인식하고 어떻게 이해하고 있는지를 분석하였다. 결과적으로 다양한 SSI 추론에서 일부 NOT 요소가 자연스럽고 명시적으로 나타났다. 특히, 인공물 및 시스템 차원에 해당하는 NOT 요소는 SSI의 맥락에 상관없이 자주 나타났고, 지식 및 실행차원의 NOT 요소는 자주 등장하지 않거나 간접적으로 드러났다. 더욱이 학생들의 NOT 이해의 깊이와 수준에서 질적 차이를 확인할 수 있었는데 이 결과는 과학교육 현장에서 학생들에게 요구하는 NOT 이해가 무엇인지를 구체적으로 제안할 수 있는 기회를 제공하였다.

Keywords

References

  1. Abd-El-Khalick, F. (2012). Examining the sources for our understandings about science: Enduring conflations and critical issues in research on nature of science in science education. International Journal of Science Education, 34(3), 353-374. https://doi.org/10.1080/09500693.2011.629013
  2. Albe, V. (2008). When scientific knowledge, daily life experience, epistemological and social considerations intersect: Students' argumentation in group discussions on a socio-scientific issue. Research in Science Education, 38(1), 67-90. https://doi.org/10.1007/s11165-007-9040-2
  3. Allchin, D. (2011). Evaluating knowledge of the nature of (whole) science. Science Education, 95(3), 518-542. https://doi.org/10.1002/sce.20432
  4. American Association for the Advancement of Science [AAAS] (1990). Science for all Americans. New York, NY: Oxford University Press.
  5. American Association for the Advancement of Science [AAAS] (1993). Benchmarks for science literacy. New York, NY: Oxford University Press.
  6. Bell, R. L., & Lederman, N. G. (2003). Understandings of the nature of science and decision making on science and technology based issues. Science Education, 87(3), 352-377. https://doi.org/10.1002/sce.10063
  7. Chang, H., & Lee, H. (2010). College students' decision-making tendencies in the context of socioscientific issues (SSI). Journal of Korean Association in Science Education, 30(7), 887-900.
  8. Clough, M. P. (2013). Teaching about the nature of technology: Issues and pedagogical practices. In M. P. Clough, J. K. Olson, & D. S. Niederhauser (Eds.). The nature of technology: Implications for learning and teaching (pp. 345-369). Rotterdam, Netherlands: Sense.
  9. Clough, M. P., Olson, J. K., & Niederhauser, D. S. (2013). The nature of technology: Implications for learning and teaching. Rotterdam, Netherlands: Sense.
  10. De Vries, J., & De Vries, M. (2006). Teaching about technology: An introduction to the philosophy of technology for non-philosophers (Vol. 27). Dordrecht, Netherlands: Springer.
  11. DiGironimo, N. (2011). What is technology? Investigating student conceptions about the nature of technology. International Journal of Science Education, 33(10), 1337-1352. https://doi.org/10.1080/09500693.2010.495400
  12. Eastwood, J. L., Sadler, T. D., Zeidler, D. L., Lewis, A., Amiri, L., & Applebaum, S. (2012). Contextualizing nature of science instruction in socioscientific issues. International Journal of Science Education, 34(15), 2289-2315. https://doi.org/10.1080/09500693.2012.667582
  13. Feibleman, J. K. (1961). Pure science, applied science, technology, engineering: An attempt at definitions. Technology and Culture, 2(4), 305-317. https://doi.org/10.2307/3100886
  14. Fleming, R. (1986). Adolescent reasoning in socio‐scientific issues part I: Social cognition. Journal of Research in Science Teaching, 23(8), 677-687. https://doi.org/10.1002/tea.3660230803
  15. Galison, P. (1997). Image and logic: A material culture of microphysics. USA: University of Chicago Press.
  16. Grace, M. M., & Ratcliffe, M. (2002). The science and values that young people draw upon to make decisions about biological conservation issues. International Journal of Science Education, 24(11), 1157-1169. https://doi.org/10.1080/09500690210134848
  17. Hughes, T. P. (2012). The evolution of large technological Systems. In W. E. Bijker, T. P. Hughes, T. Pinch, & D. G. Douglas (Eds.), The social construction of technological systems: New directions in the sociology and history of technology (pp. 45-74). Cambridge: MIT Press.
  18. International Technology Education Association [ITEA] (2007). Standards for technological literacy: Content for the study of technology. Reston, VA: ITEA.
  19. Khishfe, R. (2012). Nature of science and decision-making. International Journal of Science Education, 34(1), 67-100. https://doi.org/10.1080/09500693.2011.559490
  20. Kim, D., Mun, J., Lee, J., Song, C., & Park, J. (2013). The birth of modern engineers. Seoul: Ecolivres.
  21. Lee, H. (2015). Construction of nature of technology framework and its utilization for investigation of changes in college students' perception of nature of technology through SSI-based program. Unpublished Doctoral Dissertation. Ewha Womans University.
  22. Lee, H. & Lee, H. (2015). Analysis of students' socioscientific decision-making from the nature of technology perspectives. Journal of the Korean Association for Research in Science Education, 35(1), 169-177. https://doi.org/10.14697/jkase.2015.35.1.0169
  23. Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. London: Sage.
  24. National Research Council [NRC] (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.
  25. Mitcham, C. (1994). Thinking through technology: The path between engineering and philosophy. United States of America: University of Chicago Press.
  26. Pacey, A. (1983). The culture of technology. Cambridge, MA: MIT press.
  27. Ratcliffe, M. (1997). Pupil decision‐making about socio‐scientific issues within the science curriculum. International Journal of Science Education, 19(2), 167-182. https://doi.org/10.1080/0950069970190203
  28. Roberts, D. A., & Bybee, R. W. (2014). Scientific literacy, science literacy, and science education. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research on science education, Volume II (pp. 545-558). New York, NY: Routledge.
  29. Rudolph, J. L. (2000). Reconsidering the 'nature of science' as a curriculum component. Journal of Curriculum Studies, 32(3), 403-419. https://doi.org/10.1080/002202700182628
  30. Sadler, T. D., (2009) Situated learning in science education: socio‐scientific issues as contexts for practice. Studies in Science Education, 45(1), 1-42. https://doi.org/10.1080/03057260802681839
  31. Sadler, T. D., Chambers, F. W., & Zeidler, D. L. (2004). Student conceptualizations of the nature of science in response to a socioscientific issue. International Journal of Science Education, 26(4), 387-409. https://doi.org/10.1080/0950069032000119456
  32. Sadler, T. D., & Zeidler, D. L. (2004). The morality of socioscientific issues: Construal and resolution of genetic engineering dilemmas. Science education, 88(1), 4-27. https://doi.org/10.1002/sce.10101
  33. Sadler, T. D., & Zeidler, D. L. (2005). Patterns of informal reasoning in the context of socioscientific decision making. Journal of Research in Science Teaching, 42(1), 112-138. https://doi.org/10.1002/tea.20042
  34. Schwartz, R. S., Lederman, N. G., & Abd‐El‐Khalick, F. (2012). A series of misrepresentations: A response to Allchin's whole approach to assessing nature of science understandings. Science Education, 96(4), 685-692. https://doi.org/10.1002/sce.21013
  35. Vincenti, W. G. (1990). What engineers know and how they know it. Baltimore, MD: John Hopkins University Press.
  36. Volti, R. (2009). Society and Technological Change. New York, NY: Worth Publishers.
  37. Walker, K. A., & Zeidler, D. L. (2007). Promoting discourse about socioscientific issues through scaffolded inquiry. International Journal of Science Education, 29(11), 1387-1410. https://doi.org/10.1080/09500690601068095
  38. Waight, N., & Abd-El-Khalick, F. (2012). Nature of technology: Implications for design, development, and enactment of technological tools in school science classrooms. International Journal of Science Education, 34(18), 2875-2905. https://doi.org/10.1080/09500693.2012.698763
  39. Zeidler, D. L. (2014). Socioscientific issues as a curriculum emphasis:Theory, research and practice. In N. G. Lederman & S. K. Abell (Eds.),Handbook of research on science education, Volume II (pp. 697-726).New York, NY: Routledge.
  40. Zeidler, D. L., & Kahn, S. (2014). It's debatable!: Using socioscientific issuesto develop scientific literacy K-12. Arlington, VA: National ScienceTeachers Association Press.
  41. Zeidler, D. L., Sadler, T. D., Applebaum, S., & Callahan, B. E. (2009).Advancing reflective judgment through socioscientific issues. Journalof Research in Science Teaching, 46(1), 74-101. https://doi.org/10.1002/tea.20281
  42. Zeidler, D. L., Walker, K. A., Ackett, W. A., & Simmons, M. L. (2002).Tangled up in views: Beliefs in the nature of science and responsesto socioscientific dilemmas. Science Education, 86(3), 343-367. https://doi.org/10.1002/sce.10025

Cited by

  1. 과학기술 관련 사회쟁점 교육을 위한 교과교육학적 지식(SSI-PCK) 요소에 대한 탐색 vol.36, pp.4, 2016, https://doi.org/10.14697/jkase.2016.36.4.0539
  2. 공업계열 특성화고 학생들의 기술의 본성(NOT)에 대한 인식 탐구 - 과학기술사 수업을 중심으로 - vol.45, pp.1, 2016, https://doi.org/10.15717/bioedu.2017.45.1.199
  3. 과학기술관련 사회쟁점에 대한 의사결정에서 나타나는 NOT 이해 수준의 평가를 위한 루브릭 개발 및 적용 vol.37, pp.2, 2016, https://doi.org/10.14697/jkase.2017.37.2.0323
  4. Exploring the Perception Structure of Science Teachers on Basic Science, Applied Science, and Convergence Science vol.56, pp.4, 2016, https://doi.org/10.15812/ter.56.4.201712.487
  5. 기술의 본성(NOT) 개념 틀 제안 및 이공계 대학생들의 기술의 본성(NOT)에 대한 인식 탐구 vol.43, pp.3, 2019, https://doi.org/10.21796/jse.2019.43.3.363
  6. 이공계 대학생의 사회적 책임감 함양을 위한 ENACT 모형의 개발과 교육적 함의 vol.23, pp.6, 2016, https://doi.org/10.18108/jeer.2020.23.6.3