References
- S. Ali, On some new unified integrals, Adv. Comput. Math. Appl., 1(3)(2012), 151-153.
- Y. A. Brychkov, Handbook of Special Functions, Derivatives, Integrals, Series and Other Formulas, CRC Press, Taylor & Francis Group, Boca Raton, London, and New York, 2008.
- A. Baricz, Generalized Bessel Functions of the First Kind, Springer-Verlag Berlin, Heidelberg, 2010.
- A. Baricz, Geometric properties of generalized Bessel functions of complex order, Mathematica, 48(71)(1)(2006), 13-18.
- A. Baricz, Geometric properties of generalized Bessel functions, Publ. Math. Debrecen, 731(2)(2008), 155-178.
- A. Baricz, Jorden-type inequalities for generalized Bessel functions, J. Inequal. Pure and Appl. Math., 9(2)(2008), Art. 39, 6.
- J. Choi and P. Agarwal, Certain unified integrals associated with Bessel functions, Bound. Value Probl., 2013(2013):95. https://doi.org/10.1186/1687-2770-2013-95
- J. Choi and P. Agarwal, Certain unified integrals involving a product of Bessel functions of the first kind, Honam Math. J., 35(4)(2013), 667-677. https://doi.org/10.5831/HMJ.2013.35.4.667
- J. Choi and P. Agarwal, Pathway fractional integral formulas involving Bessel functions of the first kind, Adv. Stud. Contemp. Math., (Kyungshang), (2015), in press.
- J. Choi, A. Hasanov, H. M. Srivastava and M. Turaev, Integral representations for Srivastava's triple hypergeometric functions, Taiwanese J. Math., 15(2011), 2751-2762. https://doi.org/10.11650/twjm/1500406495
- J. Choi and A. K. Rathie, Evaluation of certain new class of definite integrals, Integral Transforms Spec. Funct., 2015, http://dx.doi.org/10.1080/10652469.2014.1001385
- E. Deniz, H. Orhan and H. M. Srivastava, Some suffcient conditions for univalence of certain families of integral operators involving generalized Bessel functions, Taiwanese J. Math., 15(2011), 883-917. https://doi.org/10.11650/twjm/1500406240
- C. Fox, The asymptotic expansion of generalized hypergeometric functions, Proc. Lon-don Math. Soc., 27(2)(1928), 389-400.
- M. Garg and S. Mittal, On a new unified integral, Proc. Indian Acad. Sci. Math. Sci., 114(2)(2003), 99-101. https://doi.org/10.1007/BF02829845
- D. Kumar, S. D. Purohit, A. Secer and A. Atangana, On generalized fractional kinetic equations involving generalized Bessel function of the first kind, Math. Probl. Eng., 2014, Article ID 289387, 1-7.
- P. Malik, S.R. Mondal and A. Swaminathan, Fractional Integration of generalized Bessel Function of the First kind, IDETC/CIE, USA, 2011.
- F. Oberhettinger, Tables of Mellin Transforms, Springer-Verlag, New York, 1974.
- R. K. Saxena, J. Ram and D. Kumar, Generalized fractional integration of the product of Bessel functions of the first kind, Proc. the 9th Annual Conference, SSFA, 9(2010), 15-27.
- H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam-London-New York, 2012.
- H. M. Srivastava and M. C. Daoust, A note on the convergence of Kampe de Feriet's double hypergeometric series, Math. Nachr., 53(1985), 151-159.
- H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1985.
- H. M. Srivastava, M. I. Quresh, R. Singh and A. Arora, A family of hypergeometric integrals associated with Ramanujan's integral formula, Adv. Stud. Contemp. Math., 18(2009), 113-125.
- H. M. Srivastava, K. A. Selvakumaran and S. D. Purohit, Inclusion properties for certain subclasses of analytic functions defined by using the generalized Bessel functions, Malaya J. Math., 3(2015), 360-367.
- H. Tang, H. M. Srivastava, E. Deniz and S.-H. Li, Third-order differential superordination involving the Generalized Bessel functions, Bull. Malays. Math. Sci. Soc., 38(2015), 1669-1688. https://doi.org/10.1007/s40840-014-0108-7
- G. N.Watson, A Treatise on The Theory of Bessel Functions, Second Edi., Cambridge University Press, 1996.
- E. M. Wright, The asymptotic expansion of the generalized hypergeometric functions, J. London Math. Soc., 10(1935), 286-293.
- E. M.Wright, The asymptotic expansion of integral functions defined by Taylor series, Philos. Trans. Roy. Soc. London A, 238(1940), 423-451. https://doi.org/10.1098/rsta.1940.0002
- E. M. Wright, The asymptotic expansion of the generalized hypergeometric function II, Proc. London Math. Soc., 46(2)(1940), 389-408.