• Title/Summary/Keyword: Generalized (Wright) hypergeometric functions $_p{\Psi}_q$

Search Result 7, Processing Time 0.023 seconds

CERTAIN INTEGRATION FORMULAE FOR THE GENERALIZED k-BESSEL FUNCTIONS AND DELEURE HYPER-BESSEL FUNCTION

  • Kim, Yongsup
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.523-532
    • /
    • 2019
  • Integrals involving a finite product of the generalized Bessel functions have recently been studied by Choi et al. [2, 3]. Motivated by these results, we establish certain unified integral formulas involving a finite product of the generalized k-Bessel functions. Also, we consider some integral formulas of the (p, q)-extended Bessel functions $J_{{\nu},p,q}(z)$ and the Delerue hyper-Bessel function which are proved in terms of (p, q)-extended generalized hypergeometric functions, and the generalized Wright hypergeometric functions, respectively.

CERTAIN UNIFIED INTEGRAL FORMULAS INVOLVING THE GENERALIZED MODIFIED k-BESSEL FUNCTION OF FIRST KIND

  • Mondal, Saiful Rahman;Nisar, Kottakkaran Sooppy
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.47-53
    • /
    • 2017
  • Generalized integral formulas involving the generalized modified k-Bessel function $J^{b,c,{\gamma},{\lambda}}_{k,{\upsilon}}(z)$ of first kind are expressed in terms generalized Wright functions. Some interesting special cases of the main results are also discussed.

APPARENT INTEGRALS MOUNTED WITH THE BESSEL-STRUVE KERNEL FUNCTION

  • Khan, N.U.;Khan, S.W.
    • Honam Mathematical Journal
    • /
    • v.41 no.1
    • /
    • pp.163-174
    • /
    • 2019
  • The veritable pursuit of this exegesis is to exhibit integrals affined with the Bessel-Struve kernel function, which are explicitly inscribed in terms of generalized (Wright) hypergeometric function and also the product of generalized (Wright) hypergeometric function with sum of two confluent hypergeometric functions. Somewhat integrals involving exponential functions, modified Bessel functions and Struve functions of order zero and one are also obtained as special cases of our chief results.

ON THE GENERALIZED MODIFIED k-BESSEL FUNCTIONS OF THE FIRST KIND

  • Nisar, Kottakkaran Sooppy
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.909-914
    • /
    • 2017
  • The recent research investigates the generalization of Bessel function in different forms as its usefulness in various fields of applied sciences. In this paper, we introduce a new modified form of k-Bessel functions called the generalized modified k-Bessel functions and established some of its properties.

CERTAIN NEW INTEGRAL FORMULAS INVOLVING THE GENERALIZED BESSEL FUNCTIONS

  • Choi, Junesang;Agarwal, Praveen;Mathur, Sudha;Purohit, Sunil Dutt
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.995-1003
    • /
    • 2014
  • A remarkably large number of integral formulas involving a variety of special functions have been developed by many authors. Also many integral formulas involving various Bessel functions have been presented. Very recently, Choi and Agarwal derived two generalized integral formulas associated with the Bessel function $J_{\nu}(z)$ of the first kind, which are expressed in terms of the generalized (Wright) hypergeometric functions. In the present sequel to Choi and Agarwal's work, here, in this paper, we establish two new integral formulas involving the generalized Bessel functions, which are also expressed in terms of the generalized (Wright) hypergeometric functions. Some interesting special cases of our two main results are presented. We also point out that the results presented here, being of general character, are easily reducible to yield many diverse new and known integral formulas involving simpler functions.

CERTAIN UNIFIED INTEGRALS INVOLVING A PRODUCT OF BESSEL FUNCTIONS OF THE FIRST KIND

  • Choi, Junesang;Agarwal, Praveen
    • Honam Mathematical Journal
    • /
    • v.35 no.4
    • /
    • pp.667-677
    • /
    • 2013
  • A remarkably large number of integrals involving a product of certain combinations of Bessel functions of several kinds as well as Bessel functions, themselves, have been investigated by many authors. Motivated the works of both Garg and Mittal and Ali, very recently, Choi and Agarwal gave two interesting unified integrals involving the Bessel function of the first kind $J_{\nu}(z)$. In the present sequel to the aforementioned investigations and some of the earlier works listed in the reference, we present two generalized integral formulas involving a product of Bessel functions of the first kind, which are expressed in terms of the generalized Lauricella series due to Srivastava and Daoust. Some interesting special cases and (potential) usefulness of our main results are also considered and remarked, respectively.