DOI QR코드

DOI QR Code

The Study on Characteristics of Polystyrene by Low Temperature Pyrolysis by using Co and Mo Dispersed Catalysts

Co 및 Mo 기반 촉매에 의한 폴리스티렌의 저온 열분해 특성에 관한 연구

  • Park, Jun-Gyu (Research Institute of Petroleum Technology, Korea Petroleum Quality & Distribution Authority) ;
  • Kim, Jae-Kon (Research Institute of Petroleum Technology, Korea Petroleum Quality & Distribution Authority) ;
  • Lee, Bong-Hee (Dept. of Chemical Engineering, Chungbuk National University)
  • 박준규 (한국석유관리원 석유기술연구소) ;
  • 김재곤 (한국석유관리원 석유기술연구소) ;
  • 이봉희 (충북대학교 공과대학 화학공학과)
  • Received : 2016.09.12
  • Accepted : 2016.12.16
  • Published : 2016.12.30

Abstract

This study investigated the conversion of oil products from polystyrene by using dispersed Co and Mo catalyst on reaction time and concentration change for knowledging on characteristics at low temperature (425, 450 and $475^{\circ}C$) pyrolysis and reaction time(20~80 min, 15 min interval) in a batch reactor. It will be showed the conditions for optimum pyrolysis at reaction temperature $450^{\circ}C$ and the reaction time 35min, and the main components of the converted liquid oil were styrene and benzene derivatives by GC/MS. The oil products formed during pyrolysis were classified into gas, gasoline, kero, diesel and heavy oil according to the domestic specification of petroleum products. The pyrolysis conversion rate was showed as Co catalyst > Mo catalyst > Thermal in all reaction time at reaction temperature $450^{\circ}C$. The yields rate of gas, kerosine, diesel were the most hight at Mo Catalyst, gasoline was at thermal and heavy oil was at Co catalyst. The conversion rate and yields of the pyrolysis products were the most height when Co catalyst ratio was 100%.

본 연구는 폴리스타렌(PS) 수지의 유화공정 효율성 향상을 위해 저온열분해 회분식 반응기를 이용하여, 단일 PS 수지와 Co 및 Mo 촉매를 각각 첨가한 PS 수지를 반응온도(425, 450, $475^{\circ}C$), 반응시간(20~80분, 15분 간격), 촉매 농도변화에 따른 PS수지의 액화생성물 전환율을 측정하였다. 최적의 열분해 조건은 반응온도 $450^{\circ}C$, 반응시간 35분으로 판단되며, 전환된 액화생성물의 주요 성분은 GC/MS 분석결과 스타이렌 및 벤젠유도체가 대부분으로 나타났다. 생성물은 산업통상자원부에서 고시한 증류성상 온도에 따라 가스, 가솔린, 등유, 경유, 중유로 분류하여 그 수율을 측정하였다. 그리고 $450^{\circ}C$ 반응온도에서 촉매 사용에 따른 전환율은 Co 촉매 > Mo 촉매 > 무촉매 순이었으며, 생성물 중 가스, 등유, 경유수율은 Mo 촉매, 가솔린은 무촉매, 중유는 Co 촉매에서 우수한 것으로 나타났다. Co 및 Mo 촉매 혼합 농도별 전환율 및 열분해 생성물 수율은 Co 촉매 100% 사용 시 가장 우수한 것으로 판단된다.

Keywords

References

  1. IEA, World Energy Outlook, International Energy Agency, OECD/Paris(2009).
  2. J. -K. Kim, C. H. Jeon, E. S. Yim, C. S. Jung, S. B. Lee, Y. J. Lee and M. J. Kang, A study on fuel quality characteristics of F-T diesel for production of BTL diesel, J. of the Korean Oil Chemists' Soc., 29, 450 (2012).
  3. Hart's Global Biofuel Center, Global Biofuels Outlook 2010-2020, Houston, USA(2010).
  4. J. -K. Kim, E. S. Yim, C-. S. Jung, Study on comparison of global biofuels mandates policy in transport sector, New & Renewable Energy, 7, 18 (2011).
  5. http://stat.recycling-info.or.kr/keco_web/?sub_num=12&state=view&stc_cd=009&info=pdf&stcNo=1.
  6. M. V. S. Murty, E, A. Grulke, and D. Bh attacharyya, Influence of metallic addictives on thermal degradation and liquefaction of high density polyethylene (HDPE), Polym. Degrad. Stail., 61, 421 (1998). https://doi.org/10.1016/S0141-3910(97)00228-0
  7. N. Nho, D. Shin, S. Park, K. Lee, K. Kim, S. Jeon, and B. Cho, Process Development of Pyrolysis Liqefaction for Waste Plastics, New & Renewable Energy, 2(2), 118 (2006).
  8. Y. Kodera, and B. J. McCoy, Distribtion Kinetics of Plastics Decomposition, J. Jpn. Petrol. Inst., 46, 155 (2003). https://doi.org/10.1627/jpi.46.155
  9. D. S. Scott, S. R. Czernik, J. Piskorz, and A. G. Radlrin, Fast pyrolysis of plastic wastes, Energy & Fuels, 4, 407 (1990). https://doi.org/10.1021/ef00022a013
  10. J. A. Consa, R. Front, A. Marcilla, and A. N, Garcia, Porolysis of polyethylene in fluidized Bed Reactor, Energ. Fuel 8(6), 1238 (1994). https://doi.org/10.1021/ef00048a012
  11. S. H. Cho, C. H. Kim, S. H. Kim, and B. H. Lee, Liquefaction Characteristics of Polypropylene-Polystyrene Mixture by Pyrolysis at Low Temperature, Clean Technology, 16(1) 26 (2010).
  12. H. J. Choi, S. M. Jeong, and B. H. Lee, Study on the liquefaction characteristics of ABS resin in a low-temperature pyrolysis, Korean Chem. Eng. Res., 49(4), 417 (2011). https://doi.org/10.9713/kcer.2011.49.4.417
  13. P. t. Williams, Waste treatment and disposal, Willy, Chichester, 1998.
  14. W. Kaminsky, Bark, A., and Arndt, M., New polymer by homogeneous zirconocene/alumioxane catalysts, Markomol. Chem., Markmol. Symp., 47, 83 (1991).
  15. S. H. Cho, S. M.Jeong, and B. H. Lee, Low Temperature Pyrolysis of Polypropylene by Using Co and Mo Dispersed Catalysts, Jurnal of Industrial Science and Technology Institute, 27(2), 65 (2013)
  16. S. Karagoz, T. Karayildirim, S. Ucar, M. Yuksel, and J. Yanik, Lifuefaction of municipal waste plastics in VGO over acidic and non-acidic catalyst, Fuel, 82, 415 (2003). https://doi.org/10.1016/S0016-2361(02)00250-8
  17. F. Pinto, P. Costa, I. Gulyurtlu, and I. Cabrita, Pyrolysis of plastic waste; 2. Effect of catalyst on product yield, J. Anal. Appl. Pyrolysis, 51, 57 (1999). https://doi.org/10.1016/S0165-2370(99)00008-X
  18. J. G. Park, and B. H. Lee, Liquefaction Characteristics of Polyroplyene by Low-Temperature Pyrolysis by using Co and Mo Dispersed Catalysts under time and loading Variations, J. of the Korean Oil Chemists' Soc., 32(2), 277 (2015).
  19. http://www.kpetro.or.kr/sub.jsp?MenuID=m2as401_01
  20. I. C. McNeil, Thermal Degradation, Pergamon Press, Oxford, 55 (1989).
  21. Y. Iwata, K. Sato, R. Yoneda, Y. Miki, Y. Sugimoto, A. Nishijima, H. Shimada, Catalytic functionality of unsupported molybdenum sulfide catalysts prepared with different methods, Catal, 45, 353 (1998).