DOI QR코드

DOI QR Code

Experimental study on the performance of compensation grouting in structured soil

  • Zheng, Gang (School of Civil Engineering, Tianjin University) ;
  • Zhang, Xiaoshuang (School of Civil Engineering, Tianjin University) ;
  • Diao, Yu (School of Civil Engineering, Tianjin University) ;
  • Lei, Huayang (School of Civil Engineering, Tianjin University)
  • 투고 : 2015.07.18
  • 심사 : 2015.12.29
  • 발행 : 2016.03.25

초록

Most laboratory test research has focused on grouting efficiency in homogeneous reconstituted soft clay. However, the natural sedimentary soils generally behave differently from reconstituted soils due to the effect of soil structure. A series of laboratory grouting tests were conducted to research the effect of soil structure on the performance of compensation grouting. The effects of grouting volume, overlying load and grouting location on the performance of compensation grouting under different soil structures were also studied. Reconstituted soil was altered with added cement to simulate artificial structured soil. The results showed that the final grouting efficiency was positive and significantly increased with the increase of stress ratio within a certain range when grouting in normally consolidated structured clay. However, in the same low yield stress situation, the artificial structured soil had a lower final grouting efficiency than the overconsolidated reconstituted soil. The larger of normalized grouting volume could increase the final grouting efficiency for both reconstituted and artificial structured soils. Whereas, the effect of the overlying load on final grouting efficiencies was unfavourable, and was independent of the stress ratio. As for the layered soil specimens, grouting in the artificial structured soil layer was the most efficient. In addition, the peak grouting pressure was affected by the stress ratio and the overlying load, and it could be predicted with an empirical equation when the overlying load was less than the yield stress. The end time of primary consolidation and the proportion of secondary consolidation settlement varied with the different soil structures, grouting volumes, overlying loads and grouting locations.

키워드

과제정보

연구 과제 주관 기관 : National Natural Science Foundation of China

참고문헌

  1. Akira, M. and Masahito, T. (1987), "Hydrofructuring pressure of cohesive soil", Soil. Found., 27(1), 14-22. https://doi.org/10.3208/sandf1972.27.14
  2. Au, S.K.A., Soga, K., Jafari, M.R., Bolton, M. and Komiya, K. (2003), "Factors affecting long-term efficiency of compensation grouting in clays", J. Geotech. Geoenviron. Eng., 129(3), 254-262. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:3(254)
  3. Au, A.S.K., Yeung, A.T. and Soga, K. (2006), "Pressure-controlled cavity expansion in clay", Can. Geotech. J., 43(7), 714-725. https://doi.org/10.1139/t06-037
  4. Burland, J.B. (1990), "On the compressibility and shear strength of natural clays", Geotechnique, 40(3), 329-378. https://doi.org/10.1680/geot.1990.40.3.329
  5. Butterfield, R. (1979), "A natural compression law for soils (an advance on e-log p')", Geotechnique, 29(4), 469-479. https://doi.org/10.1680/geot.1979.29.4.469
  6. Casagrande, A. and Fadum, R.E. (1940), "Notes on soil testing for engineering purposes", Soil MechanICS SERIES, 8, 36-39.
  7. Chen, B., Xu, Q. and Sun, D.A. (2014a), "An elastoplastic model for structured clays", Geomech. Eng., Int. J., 7(2), 213-231. https://doi.org/10.12989/gae.2014.7.2.213
  8. Chen, X.P., Luo, Q.Z. and Zhou, Q.J. (2014b), "Time-dependent behaviour of interactive marine and terrestrial deposit clay", Geomech. Eng., Int. J., 7(3), 279-295. https://doi.org/10.12989/gae.2014.7.3.279
  9. Cotecchia, F. and Chandler, R.J. (1997), "The influence of structure on the pre-failure behaviour of a natural clay", Geotechnique, 47(3), 523-544. https://doi.org/10.1680/geot.1997.47.3.523
  10. Essler, R.D., Drooff, E.R. and Falk, E. (2000), "Compensation grouting, concept, theory and practice", Geotechnical Special Publication, No. 104, American Society of Civil Engineers, pp. 1-15.
  11. Fearon, R.E. and Coop, M.R. (2000), "Reconstitution: What makes an appropriate reference material?", Geotechnique, 50(4), 471-477. https://doi.org/10.1680/geot.2000.50.4.471
  12. Harris, D.I., Mair, R.J., Love, J.P., Taylor, R.N. Henderson, T.O. (1994), "Observations of ground and structure movements for compensation grouting during tunnel construction at Waterloo station", Geotechnique, 44(4), 691-713. https://doi.org/10.1680/geot.1994.44.4.691
  13. Harris, D.I., Pooley, A.J., Menkiti, C.O. and Stephenson, J.A. (1996), "Construction of low level tunnels below Waterloo Station with compensation grouting for Jubilee line extension", Geotechnical Aspects of Underground Construction in Soft Ground, Balkema, Rotterdam, The Netherlands, pp. 361-366.
  14. Hong, Z.S., Zeng, L.L., Cui, Y.J., Cai, Y.Q. and Lin, C. (2012), "Compression behaviour of natural and reconstituted clays", Geotechnique, 62(4), 291-301. https://doi.org/10.1680/geot.10.P.046
  15. Komiya, K., Soga, K., Akagi, H., Jafari, M.R. and Bolton, M.D. (2001), "Soil consolidation associated with grouting during shield tunnelling in soft clayey ground", Geotechnique, 51(10), 835-846. https://doi.org/10.1680/geot.2001.51.10.835
  16. Kumar, C.P. and ISH, M. (1999), "Evaporation from shallow water table through layered soil profiles", Indian Soc. Hydraul. J. Hydraul. Eng., 5(2), 65-75.
  17. Lei, H.Y., Zhang, W.Z., Ding, X.D., Wang, X.C., Chen, L. and Huang, M.S. (2013), "Experimental study on secondary consolidation considering structural strength of clay", Chinese J. Geotech. Eng., 35(7), 1221-1227.
  18. Leroueil, S., Tavenas, F. and Brucy, F. (1979), "Behavior of destructured natural clays", J. Geotech. Eng. Div., ASCE, 105(6), 759-788.
  19. Leroueil, S., Tavenas, F. and Locat, J. (1985), "Correlations between index tests and the properties of remolded clays", Geotechnique, 34(2), 223-226.
  20. Liao, S.M., Shen, M.L., Zhou, L. and Shao, W. (2011), "In-situ experimental study on SDC grouting in Shanghai saturated soft clay", Geotechnical Special Publication, 2504-2513.
  21. Liu, M.D. and Carter, J.P. (2000), "Modelling the destructuring of soils during virgin compression", Geotechnique, 50(4), 479-483. https://doi.org/10.1680/geot.2000.50.4.479
  22. Lorenzo, G.A. and Bergado, D.T. (2004), "Fundamental parameters of cement-admixed clay-New approach", J. Geotech. Geoenviron. Eng., 130(10), 1042-1050. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:10(1042)
  23. Mair, R.J. and Hight, D.W. (1994), "Compensation grouting", World Tunnel Superf. Excavat., 8, 361-367.
  24. Marchi, M., Gottardi, G. and Soga, K. (2014), "Fracturing pressure in clay", J. Geotech. Geoenviron. Eng., 140(2), 04013008. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001019
  25. Ni, J.C. and Cheng, W.C. (2010), "Monitoring and modeling grout efficiency of lifting structure in soft clay", Int. J. Geomech., 10(6), 223-229. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000026
  26. Parsa-Pajouh, A., Fatahi, B., Vincent, P. and Khabbaz, H. (2014), "Analyzing consolidation data to predict smear zone characteristics induced by vertical drain installation for soft soil improvement", Geomech. Eng., Int. J., 7(1), 105-131. https://doi.org/10.12989/gae.2014.7.1.105
  27. Schmertmann, J.H. (1991), "The mechanical aging of soils", J. Geotech. Eng., Proc. Am. Soc. Civ. Engrs., 117(9), 1288-1330. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:9(1288)
  28. Schweiger, H.F. and Falk, E. (1998), "Reduction of settlement by compensation grouting numerical studies and experience from Lisbon underground", Proceedings of the World Tunnel Congress '98 on Tunnel and Metropolises, Sao Paulo, Brazil, April.
  29. Schweiger, H.F., Kummerer, C., Otterbein, R. and Falk, E. (2004), "Numerical modelling of settlement compensation by means of fracture grouting", Soil. Found., 44(1), 71-86. https://doi.org/10.3208/sandf.44.71
  30. Shirlaw, J.N., Dazhi, W., Ganeshan, V. and Hoe, C.S. (1999), "A compensation grouting trial in Singapore marine clay", Geotechnical Aspects of Underground Construction in Soft Ground, Balkema, Rotterdam, The Netherlands, 149-154.
  31. Soga, K., Au, S.K.A., Jafari, M.R. and Bolton, M. (2005), "Laboratory investigation of multiple grout injections into clay", Geotechnique, 55(3), 257-258. https://doi.org/10.1680/geot.2005.55.3.257
  32. Sun, F., Zhang, D.L., Wang, C., Fang, Q. and Li, B. (2010), "Analysis of raising pipeline by fracture grouting and its application", Rock Soil Mech., 31(3), 932-938.
  33. Wang, S., Chan, D. and Lam, K.C. (2009), "Experimental study of the effect of fines content on dynamic compaction grouting in completely decomposed granite of Hong Kong", Construct. Build. Mater., 23(3), 1249-1264. https://doi.org/10.1016/j.conbuildmat.2008.08.002
  34. Wang, Z., Wong, R.C.K. and Heinz, H. (2010), "Assessment of long-term behaviour of a shallow tunnel in clay till", Geomech. Eng., Int. J., 2(2), 107-123. https://doi.org/10.12989/gae.2010.2.2.107
  35. Wang, S.Y., Chan, D.H., Lam, K.C. and Au, S.K.A. (2013), "A new laboratory apparatus for studying dynamic compaction grouting into granular soils", Soils Found., 53(3), 462-468. https://doi.org/10.1016/j.sandf.2013.04.007
  36. Wisser, C., Augarde, C.E. and Burd, H.J. (2005), "Numerical modelling of compensation grouting above shallow tunnels", Int. J. Numer. Anal. Method. Geomech., 29(5), 443-471. https://doi.org/10.1002/nag.421
  37. Xie, K.H., Xie, X.Y. and Jiang, W. (2002), "A study on one-dimensional nonlinear consolidation of doublelayered soil", Comput. Geotech., 29(2), 151-168. https://doi.org/10.1016/S0266-352X(01)00017-9
  38. Xu, Z.M., Han, Q.H. and Zheng, G. (2013), "Field monitoring and analysis of effects of metro tunnels under historic buildings", Chinese J. Geotech. Eng., 32(2), 364-374.
  39. Yi, X.M., Zhang, D.L. and Pang, T.Z. (2009), "Practice and monitoring analysis of building lifting due to grouting", Rock Mech., 30(12), 3776-3782.
  40. Zhang, M., Wang, X.H. and Wang, Y. (2011), "Mechanism of grout bulb expansion and its effect on ground uplifting", J. Central South Univ. Technol., (English Edition), 18(3), 874-880. https://doi.org/10.1007/s11771-011-0776-5
  41. Zhang, M., Wang, X.H. and Wu, Y. (2012), "Numerical evaluation of uplifting effect for upper structure by grouting", J. Central South Univ. Technol., (English Edition), 19(2), 553-561.
  42. Zhang, D., Fang, Q., Hou, Y., Li, P. and Yuen Wong, L.. (2013), "Protection of buildings against damages as a result of adjacent large-span tunneling in shallowly buried soft ground", J. Geotech. Geoenviron. Eng., 139(6), 903-913. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000823

피인용 문헌

  1. Pressure analysis in grouting and water pressure test to achieving optimal pressure vol.13, pp.4, 2016, https://doi.org/10.12989/gae.2017.13.4.685
  2. Experimental observation and numerical simulation of cement grout penetration in discrete joints vol.18, pp.3, 2016, https://doi.org/10.12989/gae.2019.18.3.259
  3. An improved approach to evaluate the compaction compensation grouting efficiency in sandy soils vol.20, pp.4, 2016, https://doi.org/10.12989/gae.2020.20.4.313