• Title/Summary/Keyword: primary consolidation

Search Result 96, Processing Time 0.027 seconds

Numerical analysis of embankment primary consolidation with porosity-dependent and strain-dependent coefficient of permeability

  • Balic, Anis;Hadzalic, Emina;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • v.11 no.2
    • /
    • pp.93-106
    • /
    • 2022
  • The total embankment settlement consists of three stages: the initial settlement, the primary consolidation settlement, and the secondary consolidation settlement. The total embankment settlement is largely controlled by the primary consolidation settlement, which is usually computed with numerical models that implement Biot's theory of consolidation. The key parameter that affects the primary consolidation time is the coefficient of permeability. Due to the complex stress and strain states in the foundation soil under the embankment, to be able to predict the consolidation time more precisely, aside from porosity-dependency, the strain-dependency of the coefficient of permeability should be also taken into account in numerical analyses. In this paper, we propose a two-dimensional plane strain numerical model of embankment primary consolidation, which implements Biot's theory of consolidation with both porosity-dependent and strain-dependent coefficient of permeability. We perform several numerical simulations. First, we demonstrate the influence of the strain-dependent coefficient of permeability on the computed results. Next, we validate our numerical model by comparing computed results against in-situ measurements for two road embankments: one near the city of Saga, and the other near the city of Boston. Finally, we give our concluding remarks.

The Study on Determination of the Coefficient of Terzaghi's Consolidation by Curve Fitting (Curve Fittig에 의한 Terzaghi의 압밀계수 산정방법 연구)

  • Kim, Chan Sik;Eam, Sung Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.1
    • /
    • pp.101-107
    • /
    • 2014
  • It has been known that Terzaghi's consolidation theory is not well consistent with the consolidation phenomenon on the soft clay ground, but this theory has still been adopted normally in practice because there is no method for estimating the consolidation settlement and rate easier than Terzaghi's theory. It is impossible to map whole part of consolidation settlement vs time curve to the curve of Terzaghi'z average degree of consolidation. If the primary consolidation and the secondary compression are happened same time, it would be useless of trying to find the end of primary consolidation, but it is needed for using Terzaghi's theory that the end of consolidation is determined to the time of beginning consistency between the final settlement analyzed with curve fitting and the experimented consolidation settlement.

An Analysis of the Settlement Behavior of Soft Clayey Ground Considering the Effect of Creep during the Primary Consolidation (1차압밀과정중의 크리프의 영향을 고려한 연약 점성토지반의 침하거동 해석)

  • Baek, Won-Jin;Matsuda, Hiroshi;Choi, Woo-Jung;Kim, Chan-Kee;Song, Byung-Gwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.107-115
    • /
    • 2008
  • This paper is performed to examine the effect of creep during the primary consolidation and the applicability of the Yin's EVP (Elasto-Visco-Plastic) model. In ordinary consolidation theories using the elastic model, the primary consolidation process can be expressed but the secondary consolidation process cannot. It is due to the viscosity, which can express the secondary consolidation, and is sometimes related to the scale effect (difference of the thickness of clay layer between laboratory sample and field condition) such as hypotheses Type A and Type B shown by Ladd et al. (1977). Usually, the existence of the creep during the primary consolidation has been conformed and the Type B is well acceped. On the other hand, from the large-scaled consolidation tests the intermediate characteristic between Type A and Type B was proposed as Type C by Aboshi (1973). In this study, to clarify the effect of creep on the settlement-time relation during the primary consolidation in detail, Type B consolidation tests were performed using the separate-type consolidation test apparatus for a peat and clay. Then the test results were analyzed by using Yin's EVP Model (Yin and Graham, 1994). In conclusion, followings were obtained. At the end of primary consolidation, the compression for the subspecimens should not be the same because of the difference of the excess pore water pressure dissipation rate. And the average settlement measured by the separate-type consolidometer coincides with the analyzed one using the Yin's EVP model. As for the dissipation of the excess pore water pressure, however, the measured excess pore water pressure dissipates faster compared with the Yin's model.

A Study on the Beginning Point of Secondary Compression in Consolidation Theory (압밀이론에서 2차 압축 적용 시점에 관한 연구)

  • Kwon, Byenghae;Eam, Sunghoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.6
    • /
    • pp.51-63
    • /
    • 2023
  • To improve the problem that the settlement curve of the consolidation theory of Terzaghi does not match well with the actual settlement curve, we included a secondary compression settlement and analyzed it by varying the beginning point and then obtained the following results. The current methods of calculating the compression index from the  log𝜎 curve and the coefficient of consolidation from the time-dependent settlement curve for each consolidation pressure proved that the final settlement amount will be consistent after a long time, but the actual settlement amount will always be smaller than the predicted settlement amount during the settlement progress stage. The consolidation factors estimated by the curve fitting with the condition that the secondary compression begins in the second half of the primary compression showed similar values to the consolidation factors estimated by the curve fitting for the primary compression only, and the settlement curves were in better agreement throughout the compression. It showed different values, showing low validity. It can be inferred that secondary compression acts from the point when a significant portion of the excess pore water pressure is dissipated, and the loading stress begins to have more influence on the skeletal structure of the soil. Analysis results show that secondary compression begins at the range of 91 % to 98 % on the average degree of primary consolidation.

A Study on the Characteristics of Consolidation of Soils (I) (The Influence of Pre-consolidation Load of Soils on Consolidation Characteristics) (압밀특성에 관한 연구 (I) (선행하중이 압밀특성에 주는 영향))

  • 류능환;강예묵
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.18 no.4
    • /
    • pp.4242-4250
    • /
    • 1976
  • The determination of the pre-consolidation load known to have a great effect on the consolidation characteristics of the soil have been researched and discussed in detail by many other researchers. A study was undertaken to investigate and compare the effect of pre-consolidation loads on the coefficient of permeability and the consolidation characterisics of soil through the consolidation test on the three types of soil samples. The results of this study are follows; 1. Large compression index is dependent on initial void ratio of the sample being used and the pressure-void ratio curve shows a curved linear relationship in over-consolidated area but a linear relationship in normally consolidated area.2. Settlement-time curve is S-shaped where the pressure is larger than pre-consolidation load and regardless of over-burden pressure, it is a similar straight line respectively in the secondary consolidation area. 3. Primary consolidation ratio of the sample increases almost linearly with the increase of over-burden pressure but the coefficient of volume compressibility decreases linearly with the increase of it. 4. Time factor of a certain degree of consolidation increases with over-burden pressure but the coefficient of consolidation decreases with it in over-consolidated area. There is a linear relationship between them in normally consolidated area. 5. The void ratio of completion point of primary consolidation decreases linearly with over-burden pressure. 6. The coefficient of permeability of sample decreases linearly with over-burden pressure in normally consolidated area, also it increases linearly with increment of the void ratio of the sample.

  • PDF

A Consolidation Settlement Prediction Considering Primary and Secondary Consolidation (1차와 2차 침하를 고려한 압밀침하량 예측)

  • Lee, Dal-Won;Jeong, Seong-Gyu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.1
    • /
    • pp.61-68
    • /
    • 2005
  • In this study, it was proposed that an equation for predicting consolidation settlement on soft clay ground, which separate total settlement into primary and secondary consolidation settlement equation. The consolidation settlements by the proposed equation and by the measured settlements from laboratory model test were compared and verified for its application. It was appeared that the proposed equation from the laboratory model test approach to be more realistic comparing to !the result of Terzaghi's equation. From the above application, it was concluded that the final settlement prediction by. the Hyperbolic, Asaoka methods is needed to the initial settlement but the proposed equation could be much applicable in the lacking condition of measured data of the initial period.

A Study on the Relaxion of Secondary Compression Settlement using Preloading Method (프리로딩에 의한 2차 압밀침하량 감소에 관한 연구)

  • Huh, Ik-Chang;Im, Jong-Chul;Chang, Ji-Gun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1086-1093
    • /
    • 2005
  • In soft ground, consolidation settlement is mainly consider. The primary consolidation settlement which is the time when the excess pore water pressure is completely dispersed and the secondary consolidation settlement which follows. Recently as the depth of consolidation layer increases the consideration of not only the primary consolidation settlement but also of the secondary consolidation settlement becomes a very important element. But up to the present there were only a few in-depth study of the secondary consolidation settlement performed. At present there are a lot of methods available when it comes to the improvement of soft soil. In this study, Preloading Method which is the most commonly used soft soil improvement method locally was used in order to investigate the method for the reduction of secondary consolidation settlement. The objective of this study is to determine the amount of preloading required to reduce secondary consolidation settlement and to determine whether secondary consolidation settlement using standard consolidation test.

  • PDF

Study on the Characteristics of Consolidation(II) -The Effects of Load Increment Ratio Consolidation Characteristics- (압밀(壓密) 특성(特性)에 관(關)한 연구(硏究)(II) -하중(荷重) 증가율(增加率)이 압밀특성(壓密特性)에 미치는 영향(影響)-)

  • Kang, Yea-Mook;Ryu, Neung-Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.4 no.1
    • /
    • pp.88-93
    • /
    • 1977
  • The following is the result of experiment on consolidation test under various load increment ratios by alternation of standard load increment ratio. The more load increment ratio was, the more settlement was resulted. But expansions were not associated with load increment ratios. Primary consolidation took longer period to complete as load increment ratio was decreased. And under the condition of over-consolidated range, the completion of primary consolidation took longer period as the load was incremented. Under the condition of normal consolidated range, there was no change in time of completing primary consolidation. The coefficient of consolidation was decreased with increment of consolidation load, and the coefficient of consolidation had high values as the load increment ratio was increased. The values of ratio of secondary consolidation was highest near the transition point of consolidation curve.

  • PDF

Required Time for Isotopic and Ko Consolidation of Marine Clay in Triaxial Cell (삼축셀에서 해성점토의 등방 및 Ko 압밀소요 시간)

  • Lee, Kyeong-Jun;Jung, Du-Hwoe;Im, Jong-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.8
    • /
    • pp.137-147
    • /
    • 2007
  • Isotropic (instant loading) and Ko (gradual increase loading) consolidation tests were conducted in triaxial test equipment using cylindrical sample (5.0 cm in diameter and 10.0 cm in height) on two marine clay deposits. The duration of primary consolidation was estimated by two curve fitting methods using measured strain. A differential equation of consolidation for drainage in the radial and vertical direction was solved by the implicit finite difference scheme. The results of two curve fitting methods were compared with the numerical solutions to evaluate the appropriate axial loading rate of Ko consolidation and the primary consolidation periods. In addition, primary consolidation periods of the samples with a diameter of 35 mm and a height of 70 mm were calculated. The relation of radial and vertical consolidation coefficients is also presented.

One-dimensional consolidation analysis of clayey soils based on elasto-viscous liquid model (탄점성압밀방정식을 이용한 점성토의 일차원 압밀 해석에 관한 연구)

  • 염혜선;김지용;정승용;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.689-694
    • /
    • 2000
  • The traditional concept after Terzaghi was that consolidation was the dissipation process of pore water pressure compatible to external loading which was generated immediately after the loading. However, a theory of one-dimensional consolidation based on elasto-viscous liquid model proposed by Yoshikuni(1994) explained that the process of primary and secondary consolidation was considered to be not a simple process of dissipation of pore water pressure but a simultaneous process of dissipation and generation by external loading. This study attempts to demonstrate general consolidation behaviour of clayey soils including effects of consolidation history, load increment and thickness of cohesive layer by one-dimensional Finite Difference Method(F.D.M) analysis from the viewpoint of elasto-viscous consolidation theory.

  • PDF