Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Akira, M. and Masahito, T. (1987), "Hydrofructuring pressure of cohesive soil", Soil. Found., 27(1), 14-22. https://doi.org/10.3208/sandf1972.27.14
- Au, S.K.A., Soga, K., Jafari, M.R., Bolton, M. and Komiya, K. (2003), "Factors affecting long-term efficiency of compensation grouting in clays", J. Geotech. Geoenviron. Eng., 129(3), 254-262. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:3(254)
- Au, A.S.K., Yeung, A.T. and Soga, K. (2006), "Pressure-controlled cavity expansion in clay", Can. Geotech. J., 43(7), 714-725. https://doi.org/10.1139/t06-037
- Burland, J.B. (1990), "On the compressibility and shear strength of natural clays", Geotechnique, 40(3), 329-378. https://doi.org/10.1680/geot.1990.40.3.329
- Butterfield, R. (1979), "A natural compression law for soils (an advance on e-log p')", Geotechnique, 29(4), 469-479. https://doi.org/10.1680/geot.1979.29.4.469
- Casagrande, A. and Fadum, R.E. (1940), "Notes on soil testing for engineering purposes", Soil MechanICS SERIES, 8, 36-39.
- Chen, B., Xu, Q. and Sun, D.A. (2014a), "An elastoplastic model for structured clays", Geomech. Eng., Int. J., 7(2), 213-231. https://doi.org/10.12989/gae.2014.7.2.213
- Chen, X.P., Luo, Q.Z. and Zhou, Q.J. (2014b), "Time-dependent behaviour of interactive marine and terrestrial deposit clay", Geomech. Eng., Int. J., 7(3), 279-295. https://doi.org/10.12989/gae.2014.7.3.279
- Cotecchia, F. and Chandler, R.J. (1997), "The influence of structure on the pre-failure behaviour of a natural clay", Geotechnique, 47(3), 523-544. https://doi.org/10.1680/geot.1997.47.3.523
- Essler, R.D., Drooff, E.R. and Falk, E. (2000), "Compensation grouting, concept, theory and practice", Geotechnical Special Publication, No. 104, American Society of Civil Engineers, pp. 1-15.
- Fearon, R.E. and Coop, M.R. (2000), "Reconstitution: What makes an appropriate reference material?", Geotechnique, 50(4), 471-477. https://doi.org/10.1680/geot.2000.50.4.471
- Harris, D.I., Mair, R.J., Love, J.P., Taylor, R.N. Henderson, T.O. (1994), "Observations of ground and structure movements for compensation grouting during tunnel construction at Waterloo station", Geotechnique, 44(4), 691-713. https://doi.org/10.1680/geot.1994.44.4.691
- Harris, D.I., Pooley, A.J., Menkiti, C.O. and Stephenson, J.A. (1996), "Construction of low level tunnels below Waterloo Station with compensation grouting for Jubilee line extension", Geotechnical Aspects of Underground Construction in Soft Ground, Balkema, Rotterdam, The Netherlands, pp. 361-366.
- Hong, Z.S., Zeng, L.L., Cui, Y.J., Cai, Y.Q. and Lin, C. (2012), "Compression behaviour of natural and reconstituted clays", Geotechnique, 62(4), 291-301. https://doi.org/10.1680/geot.10.P.046
- Komiya, K., Soga, K., Akagi, H., Jafari, M.R. and Bolton, M.D. (2001), "Soil consolidation associated with grouting during shield tunnelling in soft clayey ground", Geotechnique, 51(10), 835-846. https://doi.org/10.1680/geot.2001.51.10.835
- Kumar, C.P. and ISH, M. (1999), "Evaporation from shallow water table through layered soil profiles", Indian Soc. Hydraul. J. Hydraul. Eng., 5(2), 65-75.
- Lei, H.Y., Zhang, W.Z., Ding, X.D., Wang, X.C., Chen, L. and Huang, M.S. (2013), "Experimental study on secondary consolidation considering structural strength of clay", Chinese J. Geotech. Eng., 35(7), 1221-1227.
- Leroueil, S., Tavenas, F. and Brucy, F. (1979), "Behavior of destructured natural clays", J. Geotech. Eng. Div., ASCE, 105(6), 759-788.
- Leroueil, S., Tavenas, F. and Locat, J. (1985), "Correlations between index tests and the properties of remolded clays", Geotechnique, 34(2), 223-226.
- Liao, S.M., Shen, M.L., Zhou, L. and Shao, W. (2011), "In-situ experimental study on SDC grouting in Shanghai saturated soft clay", Geotechnical Special Publication, 2504-2513.
- Liu, M.D. and Carter, J.P. (2000), "Modelling the destructuring of soils during virgin compression", Geotechnique, 50(4), 479-483. https://doi.org/10.1680/geot.2000.50.4.479
- Lorenzo, G.A. and Bergado, D.T. (2004), "Fundamental parameters of cement-admixed clay-New approach", J. Geotech. Geoenviron. Eng., 130(10), 1042-1050. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:10(1042)
- Mair, R.J. and Hight, D.W. (1994), "Compensation grouting", World Tunnel Superf. Excavat., 8, 361-367.
- Marchi, M., Gottardi, G. and Soga, K. (2014), "Fracturing pressure in clay", J. Geotech. Geoenviron. Eng., 140(2), 04013008. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001019
- Ni, J.C. and Cheng, W.C. (2010), "Monitoring and modeling grout efficiency of lifting structure in soft clay", Int. J. Geomech., 10(6), 223-229. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000026
- Parsa-Pajouh, A., Fatahi, B., Vincent, P. and Khabbaz, H. (2014), "Analyzing consolidation data to predict smear zone characteristics induced by vertical drain installation for soft soil improvement", Geomech. Eng., Int. J., 7(1), 105-131. https://doi.org/10.12989/gae.2014.7.1.105
- Schmertmann, J.H. (1991), "The mechanical aging of soils", J. Geotech. Eng., Proc. Am. Soc. Civ. Engrs., 117(9), 1288-1330. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:9(1288)
- Schweiger, H.F. and Falk, E. (1998), "Reduction of settlement by compensation grouting numerical studies and experience from Lisbon underground", Proceedings of the World Tunnel Congress '98 on Tunnel and Metropolises, Sao Paulo, Brazil, April.
- Schweiger, H.F., Kummerer, C., Otterbein, R. and Falk, E. (2004), "Numerical modelling of settlement compensation by means of fracture grouting", Soil. Found., 44(1), 71-86. https://doi.org/10.3208/sandf.44.71
- Shirlaw, J.N., Dazhi, W., Ganeshan, V. and Hoe, C.S. (1999), "A compensation grouting trial in Singapore marine clay", Geotechnical Aspects of Underground Construction in Soft Ground, Balkema, Rotterdam, The Netherlands, 149-154.
- Soga, K., Au, S.K.A., Jafari, M.R. and Bolton, M. (2005), "Laboratory investigation of multiple grout injections into clay", Geotechnique, 55(3), 257-258. https://doi.org/10.1680/geot.2005.55.3.257
- Sun, F., Zhang, D.L., Wang, C., Fang, Q. and Li, B. (2010), "Analysis of raising pipeline by fracture grouting and its application", Rock Soil Mech., 31(3), 932-938.
- Wang, S., Chan, D. and Lam, K.C. (2009), "Experimental study of the effect of fines content on dynamic compaction grouting in completely decomposed granite of Hong Kong", Construct. Build. Mater., 23(3), 1249-1264. https://doi.org/10.1016/j.conbuildmat.2008.08.002
- Wang, Z., Wong, R.C.K. and Heinz, H. (2010), "Assessment of long-term behaviour of a shallow tunnel in clay till", Geomech. Eng., Int. J., 2(2), 107-123. https://doi.org/10.12989/gae.2010.2.2.107
- Wang, S.Y., Chan, D.H., Lam, K.C. and Au, S.K.A. (2013), "A new laboratory apparatus for studying dynamic compaction grouting into granular soils", Soils Found., 53(3), 462-468. https://doi.org/10.1016/j.sandf.2013.04.007
- Wisser, C., Augarde, C.E. and Burd, H.J. (2005), "Numerical modelling of compensation grouting above shallow tunnels", Int. J. Numer. Anal. Method. Geomech., 29(5), 443-471. https://doi.org/10.1002/nag.421
- Xie, K.H., Xie, X.Y. and Jiang, W. (2002), "A study on one-dimensional nonlinear consolidation of doublelayered soil", Comput. Geotech., 29(2), 151-168. https://doi.org/10.1016/S0266-352X(01)00017-9
- Xu, Z.M., Han, Q.H. and Zheng, G. (2013), "Field monitoring and analysis of effects of metro tunnels under historic buildings", Chinese J. Geotech. Eng., 32(2), 364-374.
- Yi, X.M., Zhang, D.L. and Pang, T.Z. (2009), "Practice and monitoring analysis of building lifting due to grouting", Rock Mech., 30(12), 3776-3782.
- Zhang, M., Wang, X.H. and Wang, Y. (2011), "Mechanism of grout bulb expansion and its effect on ground uplifting", J. Central South Univ. Technol., (English Edition), 18(3), 874-880. https://doi.org/10.1007/s11771-011-0776-5
- Zhang, M., Wang, X.H. and Wu, Y. (2012), "Numerical evaluation of uplifting effect for upper structure by grouting", J. Central South Univ. Technol., (English Edition), 19(2), 553-561.
- Zhang, D., Fang, Q., Hou, Y., Li, P. and Yuen Wong, L.. (2013), "Protection of buildings against damages as a result of adjacent large-span tunneling in shallowly buried soft ground", J. Geotech. Geoenviron. Eng., 139(6), 903-913. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000823
Cited by
- Pressure analysis in grouting and water pressure test to achieving optimal pressure vol.13, pp.4, 2016, https://doi.org/10.12989/gae.2017.13.4.685
- Experimental observation and numerical simulation of cement grout penetration in discrete joints vol.18, pp.3, 2016, https://doi.org/10.12989/gae.2019.18.3.259
- An improved approach to evaluate the compaction compensation grouting efficiency in sandy soils vol.20, pp.4, 2016, https://doi.org/10.12989/gae.2020.20.4.313