DOI QR코드

DOI QR Code

Skin Hydration Effect of Jeju Lava Sea Water

제주용암해수의 피부 보습 효과 연구

  • 이성훈 ((주)아모레퍼시픽 기술연구원) ;
  • 배일홍 ((주)아모레퍼시픽 기술연구원) ;
  • 민대진 ((주)아모레퍼시픽 기술연구원) ;
  • 김형준 ((주)아모레퍼시픽 기술연구원) ;
  • 박녹현 ((주)아모레퍼시픽 기술연구원) ;
  • 최지예 ((주)아모레퍼시픽 기술연구원) ;
  • 신진섭 ((주)아모레퍼시픽 기술연구원) ;
  • 김은주 ((주)아모레퍼시픽 기술연구원) ;
  • 이해광 ((주)아모레퍼시픽 기술연구원)
  • Received : 2016.09.12
  • Accepted : 2016.12.19
  • Published : 2016.12.30

Abstract

Many minerals and nutrient salts are abundant in Jeju lava sea water. The objective of this study was to evaluate the skin hydration effects of Jeju lava sea water. The skin barrier serves as a protective barrier that prevents the loss of moisture. The water holding capacity and water transport of the epidermis have been proposed to be important determinants of skin hydration. Jeju lava sea water increased the mRNA expression of filaggrin and caspase-14 which is related to natural moisturizing factor (NMF) formation. Aquaporins 3 (AQP3) are proteins that facilitate the transport of water across cell membranes. Jeju lava sea water increased the mRNA expression and protein expression of AQP3. We employed a skin equivalent model to assess the efficacy of Jeju lava sea water. In a skin equivalent model, Jeju lava sea water increased the CD44 (hyaluronic acid receptor) which is related to skin hydration. From these results, we found out Jeju lava sea water maybe help to skin hydration.

제주용암해수는 미네랄과 영양염류가 풍부한 물로 제주만이 보유한 지하수자원이다. 본 연구의 목적은 제주용암해수의 피부 보습효과를 확인하기 위한 것이다. 피부의 건조함을 막고 수분을 유지하기 위해서는 표피층의 장벽기능이 정상적으로 기능하고, 표피층 내 수분의 유지와 이동이 원활히 이루어져야 한다. 제주용암해수를 각질형성세포에 처리한 결과 표피층의 분화과정과 natural moisturizing factor (NMF) 생성과정에 관여하는 유전자인 필라그린과 caspase-14 유전자의 발현양이 증가되는 것을 확인할 수 있었다. 또한 막관통 단백질로 수분의 이동을 조절하는 aquaporin 3 (AQP3) 유전자 발현양과 단백질 발현양도 제주용암해수 처리에 의해 증가하였다. 인공피부를 이용한 실험에서 제주용암해수를 배지에 처리하고 배양한 결과 hyaluronic acid (HA)의 수용체인 CD44의 발현양이 증가하였다. 본 연구를 통해 제주용암해수는 피부 보습과 관련된 인자들의 발현양을 증가시켜 피부의 보습기능에 도움을 주는 것으로 사료되었다.

Keywords

References

  1. J. M. Brandner, S. Kief, C. Grund, M. Rendl, P. Houdek, C. Kuhn, E. E. Tschachler, W. W. Franke, and I. Moll, Organization and formation of the tight junction system in human epidermis and cultured keratinocytes, Eur. J. Cell Biol., 81(5), 253 (2002). https://doi.org/10.1078/0171-9335-00244
  2. P. J. Caspers, G. W. Lucassen, E. A. Carter, H. A. Bruining, and G. J. Puppels, In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles, J. Invest. Dermatol., 116(3), 434 (2001). https://doi.org/10.1046/j.1523-1747.2001.01258.x
  3. A. V. Rawlings and C. R. Harding, Moisturization and skin barrier function, Dermatol. Ther., 17(s1), 43 (2004). https://doi.org/10.1111/j.1396-0296.2004.04S1005.x
  4. B. A. Dale, K. A. Resing, and J. D. Lonsdale-Eccles, Filaggrin: a keratin filament associated protein, Ann. N. Y. Acad. Sci., 455(1), 330 (1985). https://doi.org/10.1111/j.1749-6632.1985.tb50420.x
  5. A. Sandilands, C. Sutherland, A. D. Irvine, and W. H. McLean, Filaggrin in the frontline: role in skin barrier function and disease, J. Cell Sci., 122(9), 1285 (2009). https://doi.org/10.1242/jcs.033969
  6. J. A. McGrath and J. Uitto, The filaggrin story: novel insights into skin-barrier function and disease, Trends. Mol. Med., 14(1), 20 (2008). https://doi.org/10.1016/j.molmed.2007.10.006
  7. Y. Jokura, S. Ishikawa, H. Tokuda, and G. Imokawa, Molecular analysis of elastic properties of the stratum corneum by solid-state 13C-nuclear magnetic resonance spectroscopy, J. Invest. Dermatol., 104(5), 806 (1995). https://doi.org/10.1111/1523-1747.ep12607005
  8. E. Hoste, P. Kemperman, M. Devos, G. Denecker, S. Kezic, N. Yau, B. Gilbert, S. Lippens, P. De Groote, R. Roelandt, P. Van Damme, K. Gevaert, R. B. Presland, H. Takahara, G. Puppels, P. Caspers, P. Vandenabeele, and W. Declercq, Caspase-14 is required for filaggrin degradation to natural moisturizing factors in the skin, J. Invest. Dermatol., 131(11), 2233 (2011). https://doi.org/10.1038/jid.2011.153
  9. M. Borgnia, S. Nielsen, A. Engel, and P. Agre, Cellular and molecular biology of the aquaporin water channels, Annu. Rev. Biochem., 68(1), 425 (1999). https://doi.org/10.1146/annurev.biochem.68.1.425
  10. M. Boury-Jamot, R. Sougrat, M. Tailhardat, B. Le Varlet, F. Bonte, M. Dumas, and J. M. Verbavatz, Expression and function of aquaporins in human skin: is aquaporin-3 just a glycerol transporter?, Biochim. Biophys. Acta, 1758(8), 1034 (2006). https://doi.org/10.1016/j.bbamem.2006.06.013
  11. T. Ma, M. Hara, R. Sougrat, J. M. Verbavatz, and A. S. Verkman, Impaired stratum corneum hydration in mice lacking epidermal water channel aquaporin-3, J. Biol. Chem., 277(19), 17147 (2002). https://doi.org/10.1074/jbc.M200925200
  12. J. Li, H. Tang, X. Hu, M. Chen, and H. Xie, Aquaporin-3 gene and protein expression in sun-protected human skin decreases with skin ageing, Australas. J. Dermatol., 51(2), 106 (2010). https://doi.org/10.1111/j.1440-0960.2010.00629.x
  13. W. Knudson, D. J. Aguiar, Q. Hua, and C. B. Knudson, CD44-anchored hyaluronan-rich pericellular matrices: an ultrastructural and biochemical analysis, Exp. Cell Res., 228(2), 216 (1996). https://doi.org/10.1006/excr.1996.0320
  14. B. P. Toole, Hyaluronan: from extracellular glue to pericellular cue, Nat. Rev. Cancer, 4(7), 528 (2004). https://doi.org/10.1038/nrc1391
  15. R. F. Thorne, J. W. Legg, and C. M. Isacke, The role of the CD44 transmembrane and cytoplasmic domains in coordinating adhesive and signalling events, J. Cell Sci., 117(3), 373 (2004). https://doi.org/10.1242/jcs.00954
  16. P. Heldin, E. Karousou, B. Bernert, H. Porsch, K. Nishitsuka, and S. S. Skandalis, Importance of hyaluronan-CD44 interactions in inflammation and tumorigenesis, Connect. Tissue Res., 49(3), 215 (2008). https://doi.org/10.1080/03008200802143323
  17. C. Wang, M. Tammi, and R. Tammi, Distribution of hyaluronan and its CD44 receptor in the epithelia of human skin appendages, Histochemistry, 98(2), 105 (1992). https://doi.org/10.1007/BF00717001
  18. R. Tammi, U. M. Agren, A. L. Tuhkanen, and M. Tammi, Hyaluronan metabolism in skin, Prog. Histochem. Cytochem., 29(2), 1 (1994).
  19. S. Karvinen, V. M. Kosma, M. I. Tammi, and R. Tammi, Hyaluronan, CD44 and versican in epidermal keratinocyte tumours, Br. J. Dermatol., 148(1), 86 (2003). https://doi.org/10.1046/j.1365-2133.2003.05028.x
  20. N. Kirschner, M. Haftek, C. M. Niessen, M. J. Behne, M. Furuse, I. Moll, and J. M. Brandner, CD44 regulates tight-junction assembly and barrier function, J. Invest. Dermatol., 131(4), 932 (2011). https://doi.org/10.1038/jid.2010.390
  21. M. Denda, C. Katagiri, T. Hirao, N. Maruyama, and M. Takahashi, Some magnesium salts and a mixture of magnesium and calcium salts accelerate skin barrier recovery, Arch. Dermatol. Res., 291(10), 560 (1999). https://doi.org/10.1007/s004030050454
  22. E. Proksch, H. P. Nissen, M. Bremgartner, and C. Urquhart, Bathing in a magnesium-rich Dead Sea salt solution improves skin barrier function, enhances skin hydration, and reduces inflammation in atopic dry skin, Int. J. Dermatol., 44(2), 151 (2005). https://doi.org/10.1111/j.1365-4632.2005.02079.x
  23. E. D. Son, Y. Kim, K. M. Joo, H. J. Kim, E. Lee, G. W. Nam, E. G. Cho, M. Noh, J. H. Chung, S. Y. Byun, and T. R. Lee, Skin dryness in apparently healthy human skin is associated with decreased expression of bleomycin hydrolase in the stratum corneum, Clin. Exp. Dermatol., 40(3), 247 (2015). https://doi.org/10.1111/ced.12520
  24. C. Y. Hsu, J. Henry, A. A. Raymond, M. C. Mechin, V. Pendaries, D. Nassar, B. Hansmann, S. Balica, O. Burlet-Schiltz, A. M. Schmitt, H. Takahara, C. Paul, G. Serre, and M. Simon, Deimination of human filaggrin-2 promotes its proteolysis by calpain 1, J. Biol. Chem., 286(26) 23222 (2011). https://doi.org/10.1074/jbc.M110.197400