• Title/Summary/Keyword: skin equivalent

Search Result 140, Processing Time 0.029 seconds

Application of a Composite Skin Equivalent using Collagen and Acellular Dermal Matrix as the Scaffold in a Mouse Model of Full-thickness Wound (콜라겐과 무세포진피를 이용한 혼합형 인공피부 개발 및 쥐 모델에서 창상치료 적용)

  • Lee, Dong Hyuck;Youn, Jin Chul;Lee, Jung Hee;Kim, In Seop
    • KSBB Journal
    • /
    • v.29 no.1
    • /
    • pp.42-49
    • /
    • 2014
  • The aim of this study was to develop a composite human skin equivalent for wound healing. Collagen type1 and acellular dermal matrix powder were utilized as the scaffold with dermal fibroblasts and keratinocytes for the development of a composite human skin equivalent. Fibroblast maintained the volume of composite skin equivalent and also induced keratinocytes to attach and proliferate on the surface of composite skin equivalent. The composite human skin equivalent had a structure and curvature similar to those of real skin. Balb-C nu/nu mice were used for the evaluation of full-thickness wound healing effect of the composite human skin equivalent. Graft of composite skin equivalent on full-thickness wound promoted re-epithelialization and granulation tissue formation at 9 days. Given the average wound-healing time (14 days), the wound in the developed composite skin equivalent healed quickly. The overall results indicated that this three-dimensional composite human skin equivalent can be used to effectively enhance wound healing.

Development of Dermal Equivalent Using Mouse Fibroblasts (세포조직배양법을 이용한 쥐 인공피부의 개발)

  • Yang, Eun-Kyoung;Lee, Jae-Ho;Choe, Tae-Boo;Park, Jung-Keug
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.4
    • /
    • pp.381-391
    • /
    • 1993
  • As the first stage of development of an artificial skin, fibroblasts were cultured in the collagen matrices to make a living dermal equivalent. Mouse embryonic fibroblasts were incorporated into a collagen matrices on plastic dishes containing concentrated DMEM culture media supplemented with sodium bicarbonate, hepes, antibiotics and fetal bovine serum. As the growth stimulation components, glycosaminoglycans were added: hyaluronic acid, chondroitin sulfate, heparin, chitosan were incorporated into the media at a concentration of either 1% or 5% w/w/ to collagen in order to investigate the effect on development of dermal equivalent. After the few days of incubation, gel matrics were contracted and firm dermal equivalent were formed. And the keratinocytes were cultured on top of dermal equivalent and make a three dimensional artificial skin tissue.

  • PDF

Immunohistochemical analysis of effects of UVA exposure to the human fibroblasts in the skin equivalent model

  • Kazuhiro Shimizu;Fumihide Ogawa;Bae, Sang-Jae;Yoichiro Hamasaki;Ichiro Katayama
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.500-502
    • /
    • 2002
  • In vitro and in vivo studies have reported the induction of matrix metaloproteinase (MMP)-1 in the fibroblasts by ultraviolet (UV) A irradiation. We constructed the skin equivalent model using HaCaT cells as keratinocytes and human neonatal dennal fibroblasts as fibroblasts in the present study. The induction of MMP-l in the fibroblasts was confirmed immunohistochemically 6 hours after UVA irradiation using this model. This model was simply composed of human keratinocytes and fibroblasts. To our knowledge, there have been a few papers concerning the skin equivalent model in the field of photobiology. The effect of UVA exposure to fibroblasts through keratinocytes was examined using this model. The cross-talk can be examined between keratinocytes and fibroblasts. This model can be a useful tool in the field of photobiology.

  • PDF

Preparation of Living Skin Equivalent by using the Contracted Collagen Lattice and Cultured Human Keratinocytes (수축된 콜라겐 격자와 배양된 각질형성세포를 이용한 피부 대용물질의 제조에 관한 연구)

  • Park, Jae-Gyeong;Jo, Geum-Cheol;Park, Ho-Cheol
    • Journal of Biomedical Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.51-62
    • /
    • 1993
  • An experimental study was performed for the preparation of living skin-equivalent by the using collagen gel contraction with human fibroblasts as neodermls and cultured human keratinocytes as neoderm is . The results were as follows ; 1) The rate of collagen gel contraction was dependent on the number of fibroblasts into the lattice and collagen contraction was progressed according to the increment of the number of the cells. 2) The rate of collagen gel contraction was progressed according to the decrement of the contraction of the collagen. 3) The rate of gel contraction was progressed according to the increment of serum concentration in the fixed concentration of the fibroblasts and collagen. 4) The lattice contraction was decreased according to the increment of the population doublings of the fibroblasts. 5) Macroscopically, the artificial dermis was gray white in color and tissue-like consistency and elas- ticity. 6) Microscopically, three dimensionally contracted artificial dermis showed more dense fibroblasts and its newly formed collagen fibrils in the matrix than one dimensionally contracted one. 7) Finally prepared skin-equivalent showed good attachment of living stratified keratinocytes to the dermal equivalent microscopically. It has been proposed that newly formed skin-equivalent is suitable for the graft of extensively and deeply burned patients. Shortening of the manufacturing period of skin-equivalent and development of conservation technique as a readily usable state are to be solved for our ongoing works.

  • PDF

Skin photoaging in reconstituted skin culture models (3D 피부세포 배양계를 이용한 피부광노화 연구)

  • 강상진
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.25 no.2
    • /
    • pp.59-75
    • /
    • 1999
  • Skin is continuously exposed to external stimuli including ultraviolet radiation, which is a major cause of skin photoaging. According to recent discoveries, UVA with a lower energy but deep-penetrating properties, compared to UVB, is likely to play a major part in causing skin photoaging. The clinical and histochemical changes of photoaging are well characterized, but the biochemical mechanisms are poorly understood partly due to the lack of suitable experimental systems. In this work, three-dimensional, reconstituted skin culture models were prepared. After certain period of maturation, the equivalent models were shown to be similar in structure and biochemical characteristics to normal skin. Mature dermal and skin equivalent models were exposed to sub-lethal doses of UVA, and the effects of UVA relevant to dermal photoaging were monitored, including the production of elastin, collagen, collagenase(MMP-1), and tissue inhibitor of metalloproteinases-1 (TIMP-1). Interestingly, dermal and skin equivalents reacted differently to acute and chronic exposure to UVA. Elastin production was increased as soon as one week after commencing UVA irradiation by chronic exposure, although a single exposure failed to do so. This early response could be an important advantage of equivalent models in studying elastosis in photoaged skin. Collagenase activity was increased by acute UVA irradiation, but returned to control levels after repeated exposure. On the other hand, collagen biosynthesis, which was increased by a single exposure, decreased slightly during 5 weeks of prolonged UVA exposure. Collagenase has been thought to be responsible for collagen degeneration in dermal photoaging. However, according to the results obtained in this study, elevated collagenase activity is not likely to be responsible for the degeneration of collagen in dermal photoagig, while reduced production of collagen may be the main reason. It can be concluded that reconstituted skin culture models can serve as useful experimental tools for the study of skin photoaging. These culture models are relatively simple to construct, easy to handle, and are reproducible Moreover the changes of dermal photoaging can be observed within 1-4 weeks of exposure to ultraviolet light compared to 4 months to 2 years for human or animal studies. These models will be useful for biochemical and mechanistic studies in a large number of fields including dermatology, toxicology, and pharmacology.

  • PDF

A Study of Tissue-equivalent Compensator for 10MV X-ray and Co-60 Gamma-ray (고에너지 방사선치료용 조직등가보상체에 관한 고찰)

  • CHOI Tae Jin;HONG Young Rak;LIM Charn Soo;JEUNG Ho Yong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.1 no.1
    • /
    • pp.47-51
    • /
    • 1985
  • Authors describe some useful data when constructing tissue-equivalent compensators which would compensate tissue deficit in the treatment field of high energy electromagnetic radiation Tissue equivalent compensator is made of lucite. The ratio of compensator thickness to the thickness of tissue deficit depends on radiation energy, field size and the distance from the compensator to patient skin. When the compensator is separated from skin surface, the thickness ratio is always smaller than 1.0. This means that the larger the separation, the contribution to the total dose by means of scattered radiation from a tissue equivalent compensator is smaller. Authors propose that the thickness of lucite as tissue equivalent compensator is 0.57 times tissue deficit and the separation between compensator and skin is at least 15m for Co-60 gamma ray and 25cm for 10MV X-ray.

  • PDF

The Protective Effect of Mineral Water Against UVB Irradiation (미네랄워터의 피부 장벽 보호 효과 연구)

  • Lee, Sung Hoon;Min, Dae Jin;Na, Yong Joo;Shim, Jongwon;Kwon, Lee Kyoung;Cho, Jun-Cheol;Lee, Hae Kwang
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.39 no.1
    • /
    • pp.39-46
    • /
    • 2013
  • Bicationic minerals such as calcium and magnesium are known to protect the skin barrier. The principal objective of this study was to evaluate the skin barrier protective effects of mineral water, which is composed of calcium, magnesium, manganese, and fluorine. UVB irradiation induces a destruction of tight junction (TJ) components. The TJ permeability barrier was also disrupted by UVB irradiation. We employed a skin equivalent model to assess the efficacy of mineral water in this regard. Mineral water maintained the structure of the skin equivalents following UVB irradiation. The results of the TJ permeability assay showed that mineral water helped to maintain the TJ permeability barrier after UVB irradiation in skin equivalent model. Mineral water supported the structure of TJ components and restored the occludin protein level in differentiated normal human keratinocytes after UVB irradiation. In conclusion, we found out the protective effect of mineral water against UVB irradiation.

Development and Application of Artificial Skin Using Tissue Engineering (조직배양공학을 이용한 인공피부의 개발 및 응용)

  • Yang, Eun-Kyung;Park, Sue-Nie;Park, Jung-Keug
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.11
    • /
    • pp.14-17
    • /
    • 1995
  • An in vitro construct of three dimensional artificial skin equivalent has been engineered using human cervical epithelial cells and human foreskin fibroblasts with a matrix of bovine type I collagen. Two cell lines were established from cervical uteri cancer tissues which have the HPV(human papillomavirus)18 genome. These two cell lines came from the same origin but have slight differencies in growth rate and tumorigenicity. The organotypic raft culturing of epithelial cells were accomplished at air-liquid interface. The differentiation related characteristics were examined by immunohistochemistry using monoclonal antibodies against EGFreceptor, cytokeratin 5/6/18 as proliferation markers and against filaggrin, involucrin, and cytokeratin 10/13 as differentiation marker. We have obtained the stratification and the differentiation in the artificial skin equivalent, and differentiation-related proteins were expressed more in the C3-artificial skin, and proteins of proliferation were expressed more in the C3N-artificial skin, relatively. We found that reconstituted artificial skin have the same characteristics of differentiation proteins of original tissue or cells of human body.

  • PDF

KHG26792 Inhibits Melanin Synthesis in Mel-Ab Cells and a Skin Equivalent Model

  • Li, Hailan;Kim, Jandi;Hahn, Hoh-Gyu;Yun, Jun;Jeong, Hyo-Soon;Yun, Hye-Young;Baek, Kwang Jin;Kwon, Nyoun Soo;Min, Young Sil;Park, Kyoung-Chan;Kim, Dong-Seok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.3
    • /
    • pp.249-254
    • /
    • 2014
  • The purpose of this study is to characterize the effects of KHG26792 (3-(naphthalen-2-yl(propoxy)methyl)azetidine hydrochloride), a potential skin whitening agent, on melanin synthesis and identify the underlying mechanism of action. Our data showed that KHG26792 significantly reduced melanin synthesis in a dose-dependent manner. Additionally, KHG26792 downregulated microphthalmia-associated transcription factor (MITF) and tyrosinase, the rate-limiting enzyme in melanogenesis, although tyrosinase was not inhibited directly. KHG26792 activated extracellular signal-regulated kinase (ERK), whereas an ERK pathway inhibitor, PD98059, rescued KHG26792-induced hypopigmentation. These results suggest that KHG26792 decreases melanin production via ERK activation. Moreover, the hypopigmentary effects of KHG26792 were confirmed in a pigmented skin equivalent model using Cervi cornus Colla (deer antler glue), in which the color of the pigmented artificial skin became lighter after treatment with KHG26792. In summary, our findings suggest that KHG26792 is a novel skin whitening agent.