해산송사리, Oryzias dancena 유도 3배체의 세포유전학적 연구

Cytogenetic Study of Diploid and Triploid Marine Medaka, Oryzias dancena

  • 박인석 (한국해양대학교 해양생명과학부) ;
  • 길현우 (한국해양대학교 해양생명과학부) ;
  • 이태호 (한국해양대학교 해양생명과학부) ;
  • 남윤권 (부경대학교 해양바이오신소재공학과) ;
  • 고민균 (부경대학교 해양바이오신소재공학과) ;
  • 김동수 (부경대학교 해양바이오신소재공학과)
  • Park, In-Seok (Division of Marine Bioscience, College of Ocean Science and Technology, Korea Maritime and Ocean University) ;
  • Gil, Hyun Woo (Division of Marine Bioscience, College of Ocean Science and Technology, Korea Maritime and Ocean University) ;
  • Lee, Tae Ho (Division of Marine Bioscience, College of Ocean Science and Technology, Korea Maritime and Ocean University) ;
  • Nam, Yoon Kwon (Department of Marine and Aquaculture, Pukyung National University) ;
  • Ko, Min Gyun (Department of Marine and Aquaculture, Pukyung National University) ;
  • Kim, Dong Soo (Department of Marine and Aquaculture, Pukyung National University)
  • 투고 : 2016.10.19
  • 심사 : 2016.12.13
  • 발행 : 2016.12.31

초록

본 연구는 3배체 해산송사리, Oryzias dancena를 생산하기 위해서 다양한 조건에서 실험을 실시하였다. 저온처리($0^{\circ}C$)에서 30, 45, 60분간 처리하여 3배체를 유도 생산하였다. 여러 유도조건 결과, 45분간 처리하였을 때 가장 높은 3배체 생산율이 나타났다. 3배체 판별은 Chromosome 관찰, flow cytometer 분석 및 적혈구 측정을 통해서 판별하였다. 3배체 해산송사리의 적혈구 표면적과 부피는 2배체 해산송사리보다 크게 나타났고, 3배체 Chromosome number는 72개, 2배체는 48개가 관찰되었다. Flow cytometer 분석에서도 3배체가 2.40 pg/cell 그리고 2배체가 1.61 pg/cell 측정되어 DNA contents도 3배체가 2배체보다 1.5배 정도 크게 관찰되었다. 본 연구 결과는 불임 형질전환 어류를 위한 실험동물로의 3배체 해산송사리의 유용성 및 가치성을 제공한다.

Triploidy was induced in the marine medaka, Oryzias dancena by cold shock treatment ($0^{\circ}C$) of fertilized eggs for 30, 45, or 60 min, applied two minutes after fertilization. The triploid genotype was induced by each of the thermal shock regimes tested. The best result was obtained when the eggs were treated for 45 min, which induced triploidy in all the resulting fish. Triploidy was confirmed using chromosomal and flow cytometer analyses, and erythrocyte measurements. The surface areas and volumes of the erythrocytes of triploid fish were significantly larger than those of diploid fish, and their chromosome number (3N=72) was 1.5 times greater that for the diploids (2N=48). Based on a flow cytometer analysis, the triploid fish had approximately 1.5 times the cellular DNA content (2.40 pg/cell) of the diploid specimens (1.61 pg/cell). Data from this study provide the basis for the development of unique models for studying reproductive confinement in transgenic fish.

키워드

참고문헌

  1. Al-Fageeh, M.B. and C.M. Smales. 2006. Control and regulation of the cellular responses to cold shock: the responses in yeast and mammalian systems. Biochem. J., 397: 247-259. https://doi.org/10.1042/BJ20060166
  2. Aliah, R.S., K. Yamaoka., Y. Inada and N. Taniguchi. 1990. Effects of triploidy on tissue structure of some organs in ayu. Nip. Suis. G., 56: 569-575. https://doi.org/10.2331/suisan.56.569
  3. Allen, S.K. and J.G. Jr. Stanley. 1978. Reproductive sterility in polyploidy brook trout (Salvelinus fontinalis). Trans. Amer. Fish. Soc., 107: 473-478. https://doi.org/10.1577/1548-8659(1978)107<473:RSIPBT>2.0.CO;2
  4. Benfey, T.J. 1999. The physiology and behavior of triploid fishes. Rev. Fish. Sci., 7: 39-67. https://doi.org/10.1080/10641269991319162
  5. Cho, Y.S., S.Y. Lee, D.S. Kim and Y.K. Nam. 2010. Tolerance capacity to salinity changes in adult and larva of Oryzias dancena, a euryhaline medaka. Kor. J. Ichthyol., 22: 9-16.
  6. Cho, Y.S., S.Y. Lee, Y.K. Kim, D.S. Kim and Y.K. Nam. 2011. Functional ability of cytoskeletal ${\beta}$-actin regulator to drive constitutive and ubiquitous expression of a fluorescent reporter throughout the life cycle of transgenic marine medaka, Oryzias dancena. Transgenic Res., 20: 1333-1355. https://doi.org/10.1007/s11248-011-9501-2
  7. Cho, Y.S., S.Y. Lee, D.S. Kim and Y.K. Nam. 2012. Characterization of stablefluorescent transgenic marine medaka (Oryzias dancena) lines carrying red fluorescent protein gene driven by myosin light chain 2 promoter. Transgenic Res., 22: 849-859.
  8. Da Silva, F.S.D., R.G. Moreira, C.R. Orozco-Zapata and A.W. Silva Hilsdorf. 2007. Triploidy induction by cold shock in the South American catfish, Rhamdia quelen (Siluriformes) (Quoy and Gaimard, 1824). Aquaculture, 272: 110-114. https://doi.org/10.1016/j.aquaculture.2007.08.006
  9. Devlin, R.H., C.A. Biagi and T.Y. Yesaki. 2004. Growth, viability and genetic characteristics of GH transgenic coho salmon strains. Aquaculture, 236: 607-632. https://doi.org/10.1016/j.aquaculture.2004.02.026
  10. Devlin, R.H., L.F. Sundström and W.M. Muir. 2006. Interface of biotechnology and ecology for environmental risk assessments of transgenic fish. Trends Biotechnol., 24: 89-97. https://doi.org/10.1016/j.tibtech.2005.12.008
  11. Don, J. and R.R. Avtalion. 1986. The induction of triploidy in Oreochromis aureus by heat shock. Theor. Appl. Genet., 72: 186-192. https://doi.org/10.1007/BF00266991
  12. Felip, A., S. Zanuy, M. Carrillo and F. Piferrer. 1999. Growth and gonadal development in triploid sea bass (Dicentrarchus labrax L.) during the first two years of age. Aquaculture, 173: 389-399. https://doi.org/10.1016/S0044-8486(98)00464-5
  13. Gao, Z., W. Wang, K. Abbas, X. Zhou, Y. Yang, J.S. Diana, H. Wang, H. Wang, Y. Li and Y. Sun. 2007. Haematological characterization of loach, Misgurnus anguillicaudatus: Comparison among diploid, triploid and tetraploid specimens. Comp. Biochem. Physiol., Part A 147: 1001-1008. https://doi.org/10.1016/j.cbpa.2007.03.006
  14. Hildebrandt, B., P. Wust, O. Alhers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix and H. Riess. 2002. The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol. Hematol., 43: 33-56. https://doi.org/10.1016/S1040-8428(01)00179-2
  15. Hu, S.Y., P.Y. Lin, C.H. Liao, H.Y. Gong, G.H. Lin, K. Kawakami and J.L. Wu. 2010. Nitroreductase-mediated gonadal dysgenesis for infertility control of genetically modified zebrafish. Mar. Biotechnol., 12: 569-578. https://doi.org/10.1007/s10126-009-9244-8
  16. Hyndman, C.A., J.D. Kieffer and T.J. Benfey. 2003. Physiology and survival of triploid brook trout following exhaustive exercise in warm water. Aquaculture, 22: 629-643.
  17. Inoue, K. and Y. Takei. 2003. Asian medaka fishes offer new models for studying mechanisms of seawater adaptation. Comp. Biochem. Physiol., Part B 136: 635-645. https://doi.org/10.1016/S1096-4959(03)00204-5
  18. Kang, C.K., S.C. Tsai, T.H. Lee and P.P. Hwang. 2008. Differential expression of branchial $Na^+/K^+$-ATPase of two medaka species, Oryzias latipes and Oryzias dancena, with different salinity tolerances acclimated to fresh water, brackish water and seawater. Comp. Biochem. Physiol., Part A 151: 566-575. https://doi.org/10.1016/j.cbpa.2008.07.020
  19. Karami, A., A. Christianus, Z. Ishak, S.C. Courtenay, M.A. Syed, M. Noor Azlina and H. Noorshinah. 2010. Effect of triplodization on juvenile African catfish (Clarias gariepinus). Aquacult. Int., 18: 851-858. https://doi.org/10.1007/s10499-009-9307-x
  20. Kavumpurath, S. and T.J. Pandian. 1990. Induction of triploidy in the zebrafish, Brackydanio rerio (Hamilton). Aquacult. Fish. Manage., 21: 299-306.
  21. Kim, D.S., J.Y. Jo and T.Y. Lee. 1994. Induction of triploidy in mud loach (Misgurnus mizolepis) and its effect on gonad development and growth. Aquaculture, 120: 263-270. https://doi.org/10.1016/0044-8486(94)90083-3
  22. Kim, D.S., Y.K. Nam, I.-C. Bang and H.Y. Song. 2009a. Early gonadogenesis and sex differentiation of marine medaka, Oryzias dancena (Beloniformes; Teleostei). Kor. J. Ichthyol., 21: 141-148. (in Korean with an English abstract)
  23. Kim, D.S., Y.K. Nam, I.-C. Bang and H.Y. Song. 2009b. Embryogenesis and early ontogenesis of a marine medaka, Oryzias dancena. Kor. J. Ichthyol., 21: 227-238. (in Korean with an English abstract)
  24. Kim, D.S., Y.K. Nam and I.-S. Park. 1995. Survival and karyological analysis of reciprocal diploid and triploid hybrids between mud loach (Misgurunus mizolepis) and cyprinid loach (Misgurunus anguillicaudatus). Aquaculture, 135: 257-266. https://doi.org/10.1016/0044-8486(95)01031-9
  25. Komaru, A., Y. Uchimura, H. Ieyama and K.T. Wada. 1988. Detection of induced triploid scallop (Chlamys nobilis) by DNA microflurometry with DAPI staining. Aquaculture, 69: 201-209. https://doi.org/10.1016/0044-8486(88)90329-8
  26. Lemieux, H., N.R.L. Francois and P.U. Blier. 2003. The early ontogeny of digestive and metabolic enzyme activities in two commercial strains of arctic charr (Salvelinus alpinus L.). J. Exp. Zool., 299A: 151-160. https://doi.org/10.1002/jez.a.10298
  27. Lemoine, H.L. and L.T. Jr. Smith. 1980. Polyploidy induced in brook trout by cold shock. Trans. Amer. Fisher Soc., 109: 626-631. https://doi.org/10.1577/1548-8659(1980)109<626:PIIBTB>2.0.CO;2
  28. Maclean, N. and R.J. Laight. 2000. Transgenic fish: an evaluation of benefits and risks. Fish and Fisher, 1: 146-172. https://doi.org/10.1046/j.1467-2979.2000.00014.x
  29. Nam, Y.K., H.J. Cho, Y.S. Cho, J.K. Noh, C.G. Kim and D.S. Kim. 2001. Accelerated growth, gigantism and likely sterility in autotransgenic triploid mud loach Misgurnus mizolepis. J World Aquacult. Soc., 32: 353-363. https://doi.org/10.1111/j.1749-7345.2001.tb00461.x
  30. Nam, Y.K., G.C. Choi and D.S. Kim. 1999. Blocking of the 1st cleavage in mud loach (Misgurnus mizolepis). Kor. J. Aquacult., 12: 167-173.
  31. Park, I.-S. and D.S. Kim. 2000. Comparison of some tissues in diploid and induced triploid hybrid between mud loach, Misgurnus mizolepis and cyprinid loach, M. anguillicaudatus. Dev. Reprod, 4: 19-28.
  32. Park, I.-S. and H.B. Kim. 1994. Induction of triploid cherry salmon, Oncorhyncus masou. J. Aquacult., 7: 207-223.
  33. Park, I.-S. and K.Y. Park. 1994. Haematological and physiological characteristics of diploid and triploid in cherry salmon (Oncorhynchus masou). J. Aquacult., 7: 193-201.
  34. Peruzzi, S., S. Varsamos, B. Chatain, C. Fauvel, B. Menu, J.C. Falguiere, A. Severe and G. Flik. 2005. Haematological and physiological characteristics of diploid and triploid sea bass, Dicentrarchus labrax L. Aquaculture, 244: 359-367. https://doi.org/10.1016/j.aquaculture.2004.11.028
  35. Phillips, R.B., K.D. Zajicek, P.E. Ihssen and O. Johnson. 1986. Application of silver staining to the identification of triploid fish cells. Aquaculture, 54: 313-319. https://doi.org/10.1016/0044-8486(86)90275-9
  36. Piferrer, F., A. Beaumont, J.C. Falguiere, M. Flajshans, P. Haffray and L. Colombo. 2009. Polyploid fish and shellfish: Production, biology and applications to aquaculture for performance improvement and genetic containment. Aquaculture, 293: 125-156. https://doi.org/10.1016/j.aquaculture.2009.04.036
  37. Piferrer, F., R.M. Cal, B. Alvarez-Blazquez, L. Sanchez and P. Martinez. 2000. Induction of triploidy in the turbot (Scophthalmus maximus) I. Ploidy determination and the effects of cold shocks. Aquaculture, 188: 79-90. https://doi.org/10.1016/S0044-8486(00)00306-9
  38. Razak, S.A., G.L. Hwang, M.A. Rahman and N. Maclean. 1999. Growth performance and gonadal development of growth enhanced transgenic tilapia Oreochromis niloticus (L.) following heat-shock-induced triploidy. Mar. Biotechnol., 1: 533-544. https://doi.org/10.1007/PL00011808
  39. Seol, D.W., S.Y. Im, W.J. Hur, M.O. Park, D.S. Kim, J.Y. Jo and I.-S. Park. 2008. Haematological parameters and respiratory function in diploid and triploid Far Eastern catfish, Silurus asotus. Genes and Genomics, 30: 205-213.
  40. Sezaki, K., S. Watanabe and K. Hashimoto. 1988. Haematolocical parameters and erythrocyte enzyme activities associated with increase in ploidy status of the spinous loach, Cobitis biwae Jordan and Snyder. J. Fish Biol., 32: 149-150. https://doi.org/10.1111/j.1095-8649.1988.tb05343.x
  41. Shrimpton, J.M., A.M.C. Sentlinger, J.W. Heath, R.H. Devlin and D.D. Heath. 2007. Biochemical and molecular differences in diploid and triploid ocean-type chinook salmon (Oncorhynchus tshawytscha) smolts. Fish Physiol. Biochem., 33: 259-268. https://doi.org/10.1007/s10695-007-9138-5
  42. Song, H.Y., I.C. Bang, Y.K. Nam and D.S. Kim. 2009. Embryogenesis and early ontogenesis of a marine medaka, Oryzias dancena. Kor. J. Ichthyol., 21: 227-238.
  43. Stillwell, E.J. and T.J. Benfey. 1996. Hemoglobin level, metabolic rate, opercular abduction rate and swimming efficiency in female triploid brook trout (Salvelinus fontinalis). Fish Physiol. Biochem., 15: 377-383. https://doi.org/10.1007/BF01875580
  44. Tave, D. 1993. Growth of triploid and diploid bighead carp (Hypophthalmichthys nobilis). J. Appl. Aquacult., 2: 13-25. https://doi.org/10.1300/J028v02n02_02
  45. Thorgaard, G.H. 1986. Ploidy manipulation and performance. Aquaculture, 57: 57-64. https://doi.org/10.1016/0044-8486(86)90180-8
  46. Thresher, R., P. Grewe, J.G. Patil, S. Whyard, C.M. Templeton, A. Chaimongol, C.M. Hardy, L.A. Hinds and R. Dunham. 2009. Development of repressible sterility to prevent the establishment of feral populations of exotic and genetically modified animals. Aquaculture, 290: 104-109. https://doi.org/10.1016/j.aquaculture.2009.02.025
  47. Uwa, H., T. Iwamatsu and O.P. Saxena. 1983. Karyotype and cellular DNA content of the Indian ricefish, Oryzias melastigma. Proc. Jpn. Acad., 59B: 43-47.
  48. Uwa, H. and Y. Ojima. 1981. Detailed and banding karyotype analysis of the medaka, Oryzias latipes in cultured cells. Proc. Jpn. Acad., 57B: 39-43.
  49. Wong, A.C. and A.L. Van Eenennaam. 2008. Transgenic approaches for the reproductive containment of genetically engineered fish. Aquaculture, 275: 1-12. https://doi.org/10.1016/j.aquaculture.2007.12.026
  50. Yu, F., J. Xiao, X.Y. Liang, S.J. Liu, G.J. Zhou, K.K. Luo, Y. Liu, W. Hu, Y.P. Wang and Z.Y. Zhu. 2011. Rapid growth and sterility of growth hormone gene transgenic triploid carp. Chn. Sci. Bullet., 56: 1679-1684. https://doi.org/10.1007/s11434-011-4446-7