DOI QR코드

DOI QR Code

Thrombin Detection with Tetrabromophenolphthalein Ethyl Ester Adsorbed on Aptamer-attached Conductive Polymer

전기전도성 고분자 위에 고정된 압타머에 흡착된 테트라브롬페놀프탈레인 에틸 에스테르를 이용한 트롬빈 검출

  • Chung, Saeromi (Department of Chemistry, Pusan National University) ;
  • Noh, Hui-Bog (Department of Chemistry, Pusan National University) ;
  • Shim, Yoon-Bo (Department of Chemistry, Pusan National University)
  • Received : 2016.09.13
  • Accepted : 2016.10.16
  • Published : 2016.11.30

Abstract

An aptamer-based biosensor using a new redox indicator has been examined for the electrochemical detection of thrombin. The aptamer modified primary aliphatic amine was covalently immobilized onto poly-(5,2':5',2"-terthiophene-3'-carboxylic acid) (polyTTCA) layer. Tetrabromophenolphthalein ethyl ester (KTBPE) was interacted to aptamer and used as an electrochemical indicator. Prior to the detection, the oxidation reaction of KTBPE onto aptamer modified layer was also investigated using differential pulse voltammetry. The characterization of the final sensor (KTBPE/aptamer -polyTTCA) was performed by voltammetry, QCM, and ESCA. After binding of thrombin onto KTBPE/aptamer based sensor, the peak signal of KTBPE was gradually decreased. The sensor exhibited a dynamic range between 10.0 and 100.0 nM with the detection limit of $1.0{\pm}0.2nM$.

새로운 산화환원 표지자를 이용한 압타머 기반의 전기화학적 트롬빈 검출 바이오 센서를 개발하였다. 1차 지방족 아민(primary aliphatic amine) 으로 개질한 압타머를 전기 전도성 고분자 poly-(5,2':5',2"-terthiophene-3'-carboxylic acid) (polyTTCA) 층 위에 공유결합을 통해 고정하여 센서 표면을 개질하였다. Tetrabromophenolphthalein ethyl ester (KTBPE)를 압타머와 상호 작용시켜 전기화학적인 산화환원 표지자로 사용하였다. 압타머로 개질한 층 위에 KTBPE의 산화반응을 differential pulse voltammetry (DPV)를 사용하여 조사하였으며, 최종 센서의 특성은 voltammetry, QCM, and ESCA 를 사용하여 조사하였다. KTBEF와 압타머 센서와 반응 후, KTBPE의 산화 피크는 감소하였다. 센서의 선형 동적 범위는 10.0 ~ 100.0 nM 이었으며, 이 때 검출 한계는 $1.0{\pm}0.2nM$이었다.

Keywords

References

  1. C. Tuerk and L. Gold, Science, 249, 505-510 (1990). https://doi.org/10.1126/science.2200121
  2. A. D. Ellington and J. W. Szostak, Nature, 346, 818-822 (1990). https://doi.org/10.1038/346818a0
  3. A.-E. Radi, J. L. A. Sanchez, E. Baldrich, and C. K. O'Sullivan, J. Am. Chem. Soc., 128, 117 (2006). https://doi.org/10.1021/ja053121d
  4. J. A. Hansen, J. Wang, A.-N. Kawde, Y. Xiang, K. V. Gothelf, and G. Collins, J. Am. Chem. Soc., 128, 2228 (2006). https://doi.org/10.1021/ja060005h
  5. A.-E. Radi, J. L. A. Sanchez, E. Baldrich, and C. K. O'Sullivan, Anal. Chem., 77, 6320 (2005). https://doi.org/10.1021/ac0505775
  6. M. Liss, B. Petersen, H. Wolf, and E. Prohaska, Anal. Chem., 56, 95-97 (2002).
  7. C. K. O'Sullivan, Anal. Bioanal. Chem., 372, 44-48 (2002). https://doi.org/10.1007/s00216-001-1189-3
  8. F. W. Scheller, U. Wollenberg, A. Warsinke, and F. Lisdat, Curr. Opin. Biotechnol., 249, 505-510 (1990).
  9. S. Tombelli, M. Minunni, E. Luzi, and M. Mascini, Bioelectrochemistry, 67, 135-141 (2005). https://doi.org/10.1016/j.bioelechem.2004.04.011
  10. S. Klug and M. Famulok, Mol. Biol. Reports, 20, 97-107 (1994). https://doi.org/10.1007/BF00996358
  11. K. Min, M. Cho, S.-Y. Han, Y.-B. Shim, J. Ku, and C. Ban, Biosens. Bioelectron., 23, 1819-1824 (2008). https://doi.org/10.1016/j.bios.2008.02.021
  12. Y. Zhu, P. Chandra, K.-M. Song, C. Ban, and Y.-B. Shim, Biosens. Bioelectron., 36, 29-34 (2012). https://doi.org/10.1016/j.bios.2012.03.034
  13. T. A. Mir, J.-H. Yoon, N. G. Gurudatt, M.-S. Won, and Y.-B. Shim, Biosens.Bioelectron., 74, 594-600 (2015). https://doi.org/10.1016/j.bios.2015.07.012
  14. P. Chandra, H.-B. Noh, M.-S. Won, and Y.-B. Shim, Biosens. Bioelectron., 26, 4442-4449 (2011). https://doi.org/10.1016/j.bios.2011.04.060
  15. T. Hianik, V. Ostatna, M. Sonlajtnerova, and I. Grman, Bioelectrochemistry, 70, 127-133 (2007). https://doi.org/10.1016/j.bioelechem.2006.03.012
  16. C. M. Olsen, W. H. Gmeiner, and L. A. Marky, J. Phys. Chem. B, 110, 6962-6969 (2006). https://doi.org/10.1021/jp0574697
  17. X. Mao and W. H. Gmeiner, Biophys. Chem., 113, 155-160 (2005). https://doi.org/10.1016/j.bpc.2004.09.003
  18. I. Smirnov and R. H. Shafer, Biochemistry, 39, 1462-1468 (2000). https://doi.org/10.1021/bi9919044
  19. Md. A. Rahman, J. I. Son, M.-S. Won, and Y.-B. Shim, Anal. Chem., 81, 6604-6611 (2009). https://doi.org/10.1021/ac900285v
  20. T.-Y. Lee, S.-C. Shin, and Y.-B. Shim, Synth. Met., 126, 105-110 (2002). https://doi.org/10.1016/S0379-6779(01)00556-2
  21. N.-H. Kwon, Md. A. Rahman, M.-S. Won, and Y.-B. Shim, Anal. Chem., 78, 52-60 (2006). https://doi.org/10.1021/ac0510080
  22. H. Cai, T. M.-H. Lee, and I.-M. Hsing, Sens. Actuator B-Chem., 114, 433-437 (2006). https://doi.org/10.1016/j.snb.2005.06.017
  23. G. S. Bang, S. Cho, and B.-G. Kim, Biosens. Bioelectron., 21, 863-870 (2005). https://doi.org/10.1016/j.bios.2005.02.002
  24. T. Hianik, V. Ostatna, Z. Zajacova, E. Stoikova, and G. Evtugyn, Bioorg. Med. Chem. Lette., 15, 291-295 (2005). https://doi.org/10.1016/j.bmcl.2004.10.083
  25. I. Koper, Mol. BioSyst., 3, 651-657 (2007). https://doi.org/10.1039/b707168j