DOI QR코드

DOI QR Code

Flame Resistance Performance of Architectural Membrane According to Woven Fabrics and Coating Materials

직포 및 코팅재 타입에 따른 건축용 막재의 난연성능

  • Kim, Ji Hyeon (Eco & Composite Materials Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Song, Hun (Eco & Composite Materials Center, Korea Institute of Ceramic Engineering & Technology)
  • Received : 2016.07.12
  • Accepted : 2016.10.31
  • Published : 2016.12.20

Abstract

Membrane structures which can be used large spatial structure are being expanded because of various advantages. However, despite the diverse membrane structure buildings and materials, the standard for membrane material performance that considering fire safety is still inadequate. Therefore, this study applied basalt or glass woven fabric with flame resistance on architectural membrane, and report the fire safety for architectural membrane using the strength properties, flammability and incombustibility. From the test result, the architectural membrane using basalt or glass woven fabric showed a low heat release rate and total heat release. Therefore, it was confirmed that the fire safety is relatively high.

막구조 건축물의 시공 증가에도 불구하고 국내에는 내화 및 방화기준이 마련되어있지 않고 일반 건축물의 내화기준을 적용하고 있어 막구조 건축물과 막재료의 특성을 반영하지 못하고 있다. 또한 막구조 건축물의 내화 및 방염성능을 확보하기 위해서는 막재료가 규정된 난연성능을 만족해야 한다. 따라서 본 연구에서는 건축용 막재의 고온에서의 안전성을 확보하기 위해 현무암섬유를 직포로 적용하였다. 그리고 막재의 강도특성과 방염 및 난연특성을 기존의 건축용 막재와 비교, 평가함으로써 막재료의 평가기준에 대한 참고자료로 삼고자 한다. 연구결과, 현무암섬유와 유리섬유 기반의 건축용 막재는 낮은 열방출율과 총방출열량을 나타내 화재안전성이 높은 것으로 확인되었다.

Keywords

References

  1. Ko Y. Development of polytetrafluoroethylene(PTFE) coated architectural membrane of more than 3 meters wide and high endurance products membrane[master' thesis].[Kongju]: Kongju National University; 2015. 40p.
  2. Jang MH, Sur SY. Analysis on the construction cost of spatial structures. Journal of the Korean Association for Spatial Structures. 2007 Jun;7(3):133-140.
  3. Kim SD. The present and future of architectural fabrics. Architectural Institute of Korea. 2005 Oct;49(10):49-56.
  4. Park KG, Yoon SK. Tearing strength test of architectural membrane. Journal of the Korean Association for Spatial Structures. 2007 Apr;7(6):5-11.
  5. Sur SY, Jang MH, Park KG, Kim SD. Study for tensile properties of architectural membrane with different yarn. Journal of the Korean Association for Spatial Structures. 2010 Sep;10(3): 41-48.
  6. KS K 0521 Textiles-Tensile properties of fabrics-Determination of maximum force and elongation at maximum force using the strip method, Korea Standard Association (2011).
  7. KS F 2819 Testing method for incombustibility of thin materials for buildings, Korea Standard Association (2005).
  8. KS F ISO 5660-1 Fire Tests for Combustion (Cone Calorimeter Test), Korea Standard Association (2009).
  9. Park SY, Kim D, Im HS. The Experimental Study for the Combustion-Property of Sandwich Panels using ISO 5660 Cone Calorimeter. Fire Science and Engineering. 2006 Dec;20 (4):33-41.
  10. Kim JH, Song H. Flame Resistance Performance of Glass Fiber and Polyester Fiber Architectural Membranes. Fire Science and Engineering. 2016 Feb;30(1):17-23 https://doi.org/10.7731/KIFSE.2016.30.1.017
  11. Kim JH, Song H, Shin HU. Flame resistance performance of architectural membranes using basalt woven fabric. Fire Science and Engineering. 2016 Apr;30(2):35-42 https://doi.org/10.7731/KIFSE.2016.30.2.035
  12. Park KG, Yoon SH, Bae BH. Mechanical characteristic test of architectural ETFE film membrane. Journal of the Korean Association for Spatial Structures. 2009 Jun;9(2):77-82.
  13. Lee KW, Kim KE, Lee DH. Combustion characteristic of fiber reinforced plastic by cone calorimeter. Fire Science and Engineering. 2004 Jun;18(2):68-72

Cited by

  1. Effect of DPK flame retardant on combustion characteristics and fire safety of PVC membrane 2017, https://doi.org/10.1016/j.csite.2017.07.002