DOI QR코드

DOI QR Code

Adaptive Slicing by Merging Vertical Layer Polylines for Reducing 3D Printing Time

3D 프린팅 시간 단축을 위한 상하 레이어 폴리라인 병합 기반 가변 슬라이싱

  • Received : 2016.10.12
  • Accepted : 2016.11.30
  • Published : 2016.12.01

Abstract

This paper presents an adaptive slicing method based on merging vertical layer polylines. Firstly, we slice the input 3D polygon model uniformly with the minimum printable thickness, which results in bounding polylines of the cross section at each layer. Next, we group a set of layer polylines according to vertical connectivity. We then remove polylines in overdense area of each group. The number of layers to merge is determined by the layer thickness computed using the cusp height of the layer. A set of layer polylines are merged into a single polyline by removing the polylines within the layer thickness. The proposed method maintains the shape features as well as reduces the printing time. For evaluation, we sliced ten 3D polygon models using our method and a global adaptive slicing method and measured the total length of polylines which determines the printing time. The result showed that the total length from our method was shorter than the other method for all ten models, which meant that our method achieved less printing time.

본 논문에서는 상하 레이어 폴리라인 병합(merging) 기반 가변(adaptive) 슬라이싱 기법을 제안한다. 먼저 출력 가능한 최소 두께 값을 사용하여 입력된 3D 폴리곤 모델을 균일(uniform) 슬라이싱하고 각 레이어 단면 영역의 경계에 대한 폴리라인(polyline)들을 생성한다. 다음으로 상하 연결성이 높은 폴리라인들을 그룹화한 후, 각 그룹 내에서 불필요한 폴리라인들을 삭제한다. 삭제할 레이어를 결정하기 위해 기하오차척도인 커스프 높이(cusp height)를 계산하고 이를 기반으로 적정 레이어 두께를 결정한다. 마지막으로레이어 두께 범위 내의 폴리라인들을 삭제함으로써 한 개 레이어로 병합된다. 제안 방법은 형상의 특징을 최대한 유지함과 동시에 출력 시간을 효과적으로 단축시킨다는 장점을 가진다. 성능 검증을위해 제안 기법과 전역적 가변 슬라이싱 기법을 사용하여 총 10개 3D 폴리곤 모델을 슬라이싱 한 후 출력 시간을 결정짓는 수치인 폴리라인의 총 길이를 측정하였다. 실험 결과, 모든 모델에 대해 제안한 기법의 폴리라인 총 길이가 더 짧았으며 이는 더 빠른 시간에 출력을 완료할 수 있다는 것을 의미한다.

Keywords

Acknowledgement

Grant : 국내 보급형 3D 프린터 맞춤형 스마트 슬라이서 개발, 플라스틱/금속 3차원 구조 일체형 3D전자회로 프린팅 장비 및 소재 개발

Supported by : 정보통신기술진흥센터, 한국산업기술평가관리원

References

  1. P. Mohan Pandey, N. Venkata Reddy, and S. G. Dhande, "Slicing procedures in layered manufacturing: a review," Rapid Prototyping Journal, vol. 9, no. 5, pp. 274-288, 2003. https://doi.org/10.1108/13552540310502185
  2. R. C. Luo, Y. C. Chang, and J. H. Tzou, "The development of a new adaptive slicing algorithm for layered manufacturing system," in 2001 IEEE International Conference on Robotics and Automation (ICRA), vol. 2, 2001, pp. 1334-1339.
  3. P. M. Pandey, N. Venkata Reddy, and S. G. Dhande, "Part deposition orientation studies in layered manufacturing," Journal of Materials Processing Technology, vol. 185, no. 1-3, pp. 125-131, Apr. 2007. https://doi.org/10.1016/j.jmatprotec.2006.03.120
  4. F. Xu, Y.S. Wong, H.T. Loh, J.Y.H. Fuh, and T. Miyazawa, "Optimal orientation with variable slicing in stereolithography," Rapid Prototyping Journal, vol. 3, no. 3, pp. 76-88, Sept. 1997. https://doi.org/10.1108/13552549710185644
  5. X. Zhang, X. Le, A. Panotopoulou, E. Whiting, and C. C. L. Wang, "Perceptual Models of Preference in 3d Printing Direction," ACM Trans. Graph., vol. 34, no. 6, pp. 215:1-215:12, 2015.
  6. K. Hu, S. Jin, and C. C. L. Wang, "Support slimming for single material based additive manufacturing," Computer-Aided Design, vol. 65, pp. 1-10, 2015. https://doi.org/10.1016/j.cad.2015.03.001
  7. J. Dumas, J. Hergel, and S. Lefebvre, "Bridging the Gap: Automated Steady Scaffoldings for 3d Printing," ACM Trans. Graph., vol. 33, no. 4, pp. 98:1-98:10, 2014.
  8. R. Schmidt and N. Umetani, "Branching Support Structures for 3d Printing," in ACM SIGGRAPH 2014 Studio, ser. SIG-GRAPH '14, 2014, pp. 9:1-9:1.
  9. J. Vanek, J. A. G. Galicia, and B. Benes, "Clever Support: Efficient Support Structure Generation for Digital Fabrication," Computer Graphics Forum, vol. 33, no. 5, pp. 117-125, 2014. https://doi.org/10.1111/cgf.12437
  10. S. Lensgraf and R. R. Mettu, "Beyond layers: A 3d-aware toolpath algorithm for fused filament fabrication," in 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016, pp. 3625-3631.
  11. H. Zhao, F. Gu, Q.-X. Huang, J. Garcia, Y. Chen, C. Tu, B. Benes, H. Zhang, D. Cohen-Or, and B. Chen, "Connected Fermat Spirals for Layered Fabrication," ACM Trans. Graph., vol. 35, no. 4, pp. 100:1-100:10, 2016.
  12. W. Wang, H. Chao, J. Tong, Z. Yang, X. Tong, H. Li, X. Liu, and L. Liu, "Saliency-Preserving Slicing Optimization for Effective 3d Printing," Computer Graphics Forum, vol. 34, no. 6, pp. 148-160, 2015. https://doi.org/10.1111/cgf.12527
  13. A. Dolenc and I. Makela, "Slicing procedures for layered manufacturing techniques," Computer-Aided Design, vol. 26, no. 2, pp. 119-126, Feb. 1994. https://doi.org/10.1016/0010-4485(94)90032-9
  14. M. T. Hayasi and B. Asiabanpour, "A new adaptive slicing approach for the fully dense freeform fabrication (FDFF) process," Journal of Intelligent Manufacturing, vol. 24, no. 4, pp. 683-694, 2013. https://doi.org/10.1007/s10845-011-0615-4
  15. E. Sabourin, S. A. Houser, and J. Helge Bohn, "Accurate exterior, fast interior layered manufacturing," Rapid Prototyping Journal, vol. 3, no. 2, pp. 44-52, June 1997. https://doi.org/10.1108/13552549710176662
  16. Justin Tyberg and Jan Helge Bohn, "Local adaptive slicing," Rapid Prototyping Journal, vol. 4, no. 3, pp. 118-127, Sept. 1998. https://doi.org/10.1108/13552549810222993
  17. K. Mani, P. Kulkarni, and D. Dutta, "Region-based adaptive slicing," Computer-Aided Design, vol. 31, no. 5, pp. 317-333, Apr. 1999. https://doi.org/10.1016/S0010-4485(99)00033-0
  18. "Ultimaker2," https://ultimaker.com/en, Sept. 2016.
  19. "Clipper Library," http://www.angusj.com/delphi/clipper.php, Sept. 2016.
  20. "Libigl," http://libigl.github.io/libigl/, Sept. 2016.

Cited by

  1. 투명조각자기의 고속 FDM 3D 프린팅을 위한 가변 압출 기법 vol.22, pp.2, 2017, https://doi.org/10.7315/cde.2017.190