DOI QR코드

DOI QR Code

Introduction to Visual Analytics Research

비주얼 애널리틱스 연구 소개

  • Received : 2016.10.15
  • Accepted : 2016.11.30
  • Published : 2016.12.01

Abstract

As big data become more complex than ever, there has been a need for various techniques and approaches to better analyze and explore such big data. A research discipline of visual analytics has been proposed to help users' visual data analysis and decision-making. Since 2006 when the first symposium of visual analytics was held, the visual analytics research has become popular as the advanced technology in computer graphics, data mining, and human-computer interaction has been incorporated in visual analytics. In this work we introduce the visual analytics research by reviewing and surveying the papers published in IEEE VAST 2015 in terms of data and visualization techniques to help domestics researchers' understanding on visual analytics.

컴퓨터 그래픽스 (Computer Graphics) 및 인간-컴퓨터 상호작용 (Human-Computer Interaction, HCI) 기술을 기반으로 효과적인 데이터 분석을위한 가시화 툴 (Tool) 기술이 크게 발전 하였다. 해당 기술 분야는 Visual Analytics (비주얼애널리틱스)라는 연구 분야로 발전하여 2006년 첫 심포지엄이 열린 이래, 다양한 데이터 마이닝 (Data Mining), 상호작용 (Interaction) 기술이 정보 가시화 (Information Visualization) 기술에 접목하여 사용자 중심의 빅 데이터분석 및 의사 결정 시스템을 연구하는 분야로 확장 되었다. 그러나 국내에서는 아직 해당 연구 분야에 대하여 제대로 알려지지 않아, 국내 컴퓨터 그래픽스 및 HCI 기술 연구에 비하여, 가시화 기술을 통한 빅데이터 분석 및 의사결정을 지원하는 시스템을 설계 하는 기술이 뒤쳐지는 편이다. 따라서 본 논문에서는 비주얼 애널리틱스 연구의 기본 철학을 살펴 보고, IEEE Symposium on Visual Analytics Science and Technology (VAST) 학회에 2015년 출판된 논문으로 사용된 데이터 및 가시화 기술 분석 서베이를 진행함으로써 국내 컴퓨터 그래픽스 연구자들의 해당 분야에 대한 이해를 돕고자 한다.

Keywords

Acknowledgement

Supported by : 미래창조과학부

References

  1. D. A. Keim, J. Kohlhammer, G. Ellis, and F. Mansmann, Mastering The Information Age-Solving Problems with Visual Analytics. Florian Mansmann, 2010.
  2. J. J. Thomas and K. A. Cook, Eds., Illuminating the Path: The R&D Agenda for Visual Analytics. IEEE Press, 2005.
  3. P. Pirolli and S. Card, "The sensemaking process and leverage points for analyst technology as identified through cognitive task analysis," pp. 2-4, 2005.
  4. D. Keim, G. Andrienko, J.-D. Fekete, C. Gorg, J. Kohlhammer, and G. Melancon, Visual analytics: Definition, process, and challenges. Springer, 2008.
  5. D. Sacha, A. Stoffel, F. Stoffel, B. C. Kwon, G. Ellis, and D. A. Keim, "Knowledge generation model for visual analytics," IEEE Transactions on Visualization and Computer Graphics, vol. 20, no. 12, pp. 1604-1613, Dec. 2014. https://doi.org/10.1109/TVCG.2014.2346481
  6. B. Shneiderman, "The eyes have it: A task by data type taxonomy for information visualizations," in Proceedings of the IEEE Symposium on Visual Languages. IEEE Computer Society Press, 1996, pp. 336-343.
  7. D. A. Keim, "Information visualization and visual data mining," IEEE Transactions on Visualization and Computer Graphics, vol. 8, no. 1, pp. 1-8, 2002. https://doi.org/10.1109/2945.981847
  8. B. S. Everitt and G. Dunn, Applied Multivariate Data Analysis. Arnold, 1991.
  9. A. Inselberg, "The plane with parallel coordinates," The Visual Computer, vol. 1, no. 2, pp. 69-91, 1985. https://doi.org/10.1007/BF01898350
  10. Y. Lu, M. Steptoe, S. Burke, H.Wang, J. Y. Tsai, H. Davulcu, D. Montgomery, S. R. Corman, and R. Maciejewski, "Exploring evolving media discourse through event cueing," IEEE Transactions on Visualization and Computer Graphics, vol. 22, no. 1, pp. 220-229, 2016. https://doi.org/10.1109/TVCG.2015.2467991
  11. H. Kim, J. Choo, H. Park, and A. Endert, "Interaxis: Steering scatterplot axes via observation-level interaction," IEEE Transactions on Visualization and Computer Graphics, vol. 22, no. 1, pp. 131-140, 2016. https://doi.org/10.1109/TVCG.2015.2467615
  12. D. Jackle, F. Fischer, T. Schreck, and D. A. Keim, "Temporal mds plots for analysis of multivariate data," IEEE Transactions on Visualization and Computer Graphics, vol. 22, no. 1, pp. 141-150, 2016. https://doi.org/10.1109/TVCG.2015.2467553
  13. I. Borg and P. Groenen, Modern multidimensional scaling, theory and applications. Springer, 1997.
  14. T. Kohonen, "The self-organizing map," Proceedings of IEEE, vol. 78, no. 9, pp. 1464-1480, 1990. https://doi.org/10.1109/5.58325
  15. J. Fulda, M. Brehmel, and T. Munzner, "Timelinecurator: Interactive authoring of visual timelines from unstructured text," IEEE Transactions on Visualization and Computer Graphics, vol. 22, no. 1, pp. 300-309, 2016. https://doi.org/10.1109/TVCG.2015.2467531
  16. M. Wattenberg, "Visualizing the stock market," in CHI '99 Extended Abstracts on Human Factors in Computing Systems, ser. CHI EA '99. ACM, 1999, pp. 188-189.
  17. H. Chernoff, "The use of faces to represent points in k-dimensional space graphically," Journal of the American Statistical Association, vol. 68, no. 342, pp. 361-368, 1973. https://doi.org/10.1080/01621459.1973.10482434
  18. S. Havre, E. Hetzler, P. Whitney, and L. Nowell, "ThemeRiver: Visualizing thematic changes in large document collections," IEEE Transactions on Visualization and Computer Graphics, vol. 8, no. 1, pp. 9-20, 2002. https://doi.org/10.1109/2945.981848
  19. M. Sedlmair, M. D. Meyer, and T. Munzner, "Design study methodology: Reflections from the trenches and the stacks," IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 12, pp. 2431-2440, 2012. https://doi.org/10.1109/TVCG.2012.213
  20. T. Munzner, "A nested process model for visualization design and validation," IEEE Transactions on Visualization and Computer Graphics, vol. 15, no. 6, pp. 921-928, 2009. https://doi.org/10.1109/TVCG.2009.111
  21. T. von Landesberger, F. Brodkorb, P. Roskosch, N. Andrienko, G. Andrienko, and A. Kerren, "Mobilitygraphs: Visual analysis of mass mobility dynamics via spatio-temporal graphs and clustering," IEEE Transactions on Visualization and Computer Graphics, vol. 22, no. 1, pp. 11-20, 2016. https://doi.org/10.1109/TVCG.2015.2468111
  22. P. Valdivia, F. Dias, F. Petronetto, C. T. Silva, and L. G. Nonato, "Wavelet-based visualization of time-varying data on graphs," in Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 2015, pp. 1-8.
  23. B. C. Kwon, S. H. Kim, S. Lee, J. Choo, J. Huh, and J. S. Yi, "Visohc: Designing visual analytics for online health communities," IEEE Transactions on Visualization and Computer Graphics, vol. 22, no. 1, pp. 71-80, 2016. https://doi.org/10.1109/TVCG.2015.2467555
  24. P. Klemm, K. Lawonn, S. Glasser, U. Niemann, K. Hegenscheid, H. Volzke, and B. Preim, "3d regression heat map analysis of population study data," IEEE Transactions on Visualization and Computer Graphics, vol. 22, no. 1, pp. 81-90, 2016. https://doi.org/10.1109/TVCG.2015.2468291
  25. J. Krause, A. Perer, and H. Stavropoulos, "Supporting iterative cohort construction with visual temporal queries," IEEE Transactions on Visualization and Computer Graphics, vol. 22, no. 1, pp. 91-100, 2016. https://doi.org/10.1109/TVCG.2015.2467622
  26. M. Glueck, P. Hamilton, F. Chevalier, S. Breslav, A. Khan, D. Wigdor, and M. Brudno, "Phenoblocks: Phenotype comparison visualizations," IEEE Transactions on Visualization and Computer Graphics, vol. 22, no. 1, pp. 101-110, 2016. https://doi.org/10.1109/TVCG.2015.2467733
  27. C. Bryan, X. Wu, S. Mniszewski, and K.-L. Ma, "Integrating predictive analytics into a spatiotemporal epidemic simulation," in Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 2015, pp. 17-24.
  28. S. Cheng and K. Mueller, "The data context map: Fusing data and attributes into a unified display," IEEE Transactions on Visualization and Computer Graphics, vol. 22, no. 1, pp. 121-130, 2016. https://doi.org/10.1109/TVCG.2015.2467552
  29. T. Lowe, E. C. Forster, G. Albuquerque, J. P. Kreiss, and M. Magnor, "Visual analytics for development and evaluation of order selection criteria for autoregressive processes," IEEE Transactions on Visualization and Computer Graphics, vol. 22, no. 1, pp. 151-159, 2016. https://doi.org/10.1109/TVCG.2015.2467612
  30. M. Rohlig, M. Luboschik, F. Kruger, T. Kirste, H. Schumann, M. Bogl, B. Alsallakh, and S. Miksch, "Supporting activity recognition by visual analytics," in Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 2015, pp. 41-48.
  31. K. Vrotsou, H. Janetzko, C. Navarra, G. Fuchs, D. Spretke, F. Mansmann, N. Andrienko, and G. Andrienko, "Simplifly: A methodology for simplification and thematic enhancement of trajectories," IEEE Transactions on Visualization and Computer Graphics, vol. 21, no. 1, pp. 107-121, 2015. https://doi.org/10.1109/TVCG.2014.2337333
  32. X. Huang, Y. Zhao, C. Ma, J. Yang, X. Ye, and C. Zhang, "Trajgraph: A graph-based visual analytics approach to studying urban network centralities using taxi trajectory data," IEEE Transactions on Visualization and Computer Graphics, vol. 22, no. 1, pp. 160-169, 2016. https://doi.org/10.1109/TVCG.2015.2467771
  33. L. Yu, W. Wu, X. Li, G. Li, W. S. Ng, S.-K. Ng, Z. Huang, A. Arunan, and H. M. Watt, "iviztrans: Interactive visual learning for home and work place detection from massive public transportation data," in Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 2015, pp. 49-56.
  34. G. D. Lorenzo, M. Sbodio, F. Calabrese, M. Berlingerio, F. Pinelli, and R. Nair, "Allaboard: Visual exploration of cellphone mobility data to optimise public transport," IEEE Transactions on Visualization and Computer Graphics, vol. 22, no. 2, pp. 1036-1050, 2016. https://doi.org/10.1109/TVCG.2015.2440259
  35. C. Palomo, Z. Guo, C. T. Silva, and J. Freire, "Visually exploring transportation schedules," IEEE Transactions on Visualization and Computer Graphics, vol. 22, no. 1, pp. 170-179, 2016. https://doi.org/10.1109/TVCG.2015.2467592
  36. Z. Zhang, K. T. McDonnell, E. Zadok, and K. Mueller, "Visual correlation analysis of numerical and categorical data on the correlation map," IEEE Transactions on Visualization and Computer Graphics, vol. 21, no. 2, pp. 289-303, 2015. https://doi.org/10.1109/TVCG.2014.2350494
  37. J. Wang and K. Mueller, "The visual causality analyst: An interactive interface for causal reasoning," IEEE Transactions on Visualization and Computer Graphics, vol. 22, no. 1, pp. 230-239, 2016. https://doi.org/10.1109/TVCG.2015.2467931
  38. M. Liu, S. Liu, X. Zhu, Q. Liao, F. Wei, and S. Pan, "An uncertainty-aware approach for exploratory microblog retrieval," IEEE Transactions on Visualization and Computer Graphics, vol. 22, no. 1, pp. 250-259, 2016. https://doi.org/10.1109/TVCG.2015.2467554
  39. F. Beck, S. Koch, and D. Weiskopf, "Visual analysis and dissemination of scientific literature collections with survis," IEEE Transactions on Visualization and Computer Graphics, vol. 22, no. 1, pp. 180-189, 2016. https://doi.org/10.1109/TVCG.2015.2467757
  40. F. Heimerl, Q. Han, S. Koch, and T. Ertl, "Citerivers: Visual analytics of citation patterns," IEEE Transactions on Visualization and Computer Graphics, vol. 22, no. 1, pp. 190-199, 2016. https://doi.org/10.1109/TVCG.2015.2467621
  41. S. Janicke, J. Focht, and G. Scheuermann, "Interactive visual profiling of musicians," IEEE Transactions on Visualization and Computer Graphics, vol. 22, no. 1, pp. 200-209, 2016. https://doi.org/10.1109/TVCG.2015.2467620
  42. I. Cho, W. Dou, D. X. Wang, E. Sauda, and W. Ribarsky, "Vairoma: A visual analytics system for making sense of places, times, and events in roman history," IEEE Transactions on Visualization and Computer Graphics, vol. 22, no. 1, pp. 210-219, 2016. https://doi.org/10.1109/TVCG.2015.2467971
  43. W. Dou, I. Cho, O. ElTayeby, J. Choo, X. Wang, and W. Ribarsky, "Demographicvis: Analyzing demographic information based on user generated content," in Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 2015, pp. 57-64.
  44. Q. Liu, Y. Hu, L. Shi, X. Mu, Y. Zhang, and J. Tang, "Egonetcloud: Event-based egocentric dynamic network visualization," in Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 2015, pp. 65-72.
  45. Y. Wu, N. Pitipornvivat, J. Zhao, S. Yang, G. Huang, and H. Qu, "egoslider: Visual analysis of egocentric network evolution," IEEE Transactions on Visualization and Computer Graphics, vol. 22, no. 1, pp. 260-269, 2016. https://doi.org/10.1109/TVCG.2015.2468151
  46. S. Chen, X. Yuan, Z. Wang, C. Guo, J. Liang, Z. Wang, X. L. Zhang, and J. Zhang, "Interactive visual discovering of movement patterns from sparsely sampled geo-tagged social media data," IEEE Transactions on Visualization and Computer Graphics, vol. 22, no. 1, pp. 270-279, 2016. https://doi.org/10.1109/TVCG.2015.2467619
  47. N. Cao, C. Shi, S. Lin, J. Lu, Y. R. Lin, and C. Y. Lin, "Targetvue: Visual analysis of anomalous user behaviors in online communication systems," IEEE Transactions on Visualization and Computer Graphics, vol. 22, no. 1, pp. 280-289, 2016. https://doi.org/10.1109/TVCG.2015.2467196
  48. R. Splechtna, K. Matkovic, D. Gracanin, M. Jelovic, and H. Hauser, "Interactive visual steering of hierarchical simulation ensembles," in Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 2015, pp. 89-96.
  49. N. Ferreira, M. Lage, H. Doraiswamy, H. Vo, L. Wilson, H. Werner, M. Park, and C. Silva, "Urbane: A 3d frame-work to support data driven decision making in urban development," in Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 2015, pp. 97-104.
  50. M. Sun, P. Mi, C. North, and N. Ramakrishnan, "Biset: Semantic edge bundling with biclusters for sensemaking," IEEE Transactions on Visualization and Computer Graphics, vol. 22, no. 1, pp. 310-319, 2016. https://doi.org/10.1109/TVCG.2015.2467813
  51. M. Brooks, S. Amershi, B. Lee, S. M. Drucker, A. Kapoor, and P. Simard, "Featureinsight: Visual support for error-driven feature ideation in text classification," in Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 2015, pp. 105-112.
  52. E. Alexander and M. Gleicher, "Task-driven comparison of topic models," IEEE Transactions on Visualization and Computer Graphics, vol. 22, no. 1, pp. 320-329, 2016. https://doi.org/10.1109/TVCG.2015.2467618