DOI QR코드

DOI QR Code

Curve Reconstruction from Oriented Points Using Hierarchical ZP-Splines

계층적 ZP-스플라인을 이용한 곡선 복구 기법

  • Kim, Hyunjun (Department of Computer Science and Engineering, University of Seoul) ;
  • Kim, Minho (Department of Computer Science and Engineering, University of Seoul)
  • 김현준 (서울시립대학교 컴퓨터과학과) ;
  • 김민호 (서울시립대학교 컴퓨터과학과)
  • Received : 2016.08.10
  • Accepted : 2016.11.30
  • Published : 2016.12.01

Abstract

In this paper, we propose and efficient curve reconstruction method based on the classical least-square fitting scheme. Specifically, given planar sample points equipped with normals, we reconstruct the objective curve as the zero set of a hierarchical implicit ZP(Zwart-Powell)-spline that can recover large holes of dataset without loosing the fine details. As regularizers, we adopted two: a Tikhonov regularizer to reduce the singularity of the linear system and a discrete Laplacian operator to smooth out the isocurves. Benchmark tests with quantitative measurements are done and our method shows much better quality than polynomial methods. Compared with the hierarchical bi-quadratic spline for datasets with holes, our method results in compatible quality but with less than 90% computational overhead.

본 논문에서는 최소자승법에 기반한 효율적인 곡선 복구 기법을 제안한다. 구체적으로는, 법선 벡터를 포함한 평면상의 샘플포인트가 주어졌을 때 계층적인 ZP(Zwart-Powell)-스플라인의 레벨로 곡선을 복구하는데, 세밀한 부문을 복구하면서도 비교적 큰 구멍도 효율적으로 메꾸고 있다. 정규화를 위해서는, (1) 선형시스템의 특이성을 피하기 위한 티코노프 정규항과 (2) 아이소커브를 부드럽게 하기 위한 이산 라플라스 정규항 두 가지를 사용하고 있다. 정량적인 벤치마크 테스트를 통해 비교한 결과, 본 방법은 다항식에 기반한 기법들에 비해 훨씬 우수한 결과를 보여준다는 것을 확인할 수 있다. 구멍이 있는 데이터의 경우, 계층적인 B-스플라인과 비교해본 결과 엇비슷한 품질을 보이지만 약 90%의 계산량만을 필요로 한다.

Keywords

Acknowledgement

Supported by : University of Seoul

References

  1. G. Thubin, "Estimation of planar curves, surfaces, and nonplanar space curves defined by implicit equations with applications to edge and range image segmentation," Pattem Analysis and Machine Intelligence, IEEE Tiansactions on, vol. 13, no. 11 , pp. 1115-1138, Nov . 1991. https://doi.org/10.1109/34.103273
  2. Z. Lei, M. Blane, and D. Cooper, "31 fitting of higher degree implicit polynomials," in Applications of Computer Vision, 1996. WACV '96., Proceedings 3rd IEEE Workshop on, Dec 1996, pp. 148-153.
  3. M. Blane, Z. Lei, H. Civi, and D. Cooper, "The 31 algorithm for fitting implicit polynomial curves and surfaces to data," IEEE Tiansactions on Pattem Analysis and Machine Intelligence, vol. 22, no. 3, pp. 298-313, Mar. 2000. https://doi.org/10.1109/34.841760
  4. T. Tasdizen, J.P. Threl, and D. Cooper, "Improving the stability of algebraic curves for applications," Image Processing, IEEE Transactions on, vol. 9, no. 3, pp. 405- 416, 2000. https://doi.org/10.1109/83.826778
  5. B. Juttler, "Least-squares fitting of algebraic spline curves via normal vector estimation," in The Mathematics of Surfaces IX, R. Cipolla and R. Martin, Eds. Springer London, 2000, pp. 263-280.
  6. C.-G. Zhu and R.-H. Wang, "Least squares fitting of piecewise algebraic curves," Mathematical Problems in Engineering, vol. 2007, 2007.
  7. M. Rouhani, A. Sappa, and E. Boyer, "Implicit b-spline surface reconstruction," Image Processing, IEEE Transactions on, vol. 24, no. 1, pp. 22- 32, Jan 2015. https://doi.org/10.1109/TIP.2014.2366374
  8. J. Duchon, "Splines minimizing rotation-invariant seminorms in sobolev spaces," in Constructive Theory of Functions of Several Variables, ser. Lecture Notes in Mathematics, W. Schempp and K. Zeller, Eds. Springer Berlin Heidelberg, 1977, vol. 571, pp. 85-100.
  9. C. Giannelli, B. Jiittler, and H. Speleers, "THE-splines: The truncated basis for hierarchical splines," Computer Aided Geometric Design, vol. 29, no. 7, pp. 485-498, oct 2012. https://doi.org/10.1016/j.cagd.2012.03.025
  10. U. Zore and B. Jiittler, "Adaptively refined multilevel spline spaces from generating systems," Computer Aided Geometric Design, vol. 31, no. 7-8, pp. 545-566, 2014, recent Trends in Theoretical and Applied Geometry. https://doi.org/10.1016/j.cagd.2014.04.003
  11. F. Calakli and G. Taubin, "SSD: Smooth signed distance surface reconstruction," Computer Graphics Forum, vol. 30, no. 7, pp. 1993-2002, 2011.
  12. P. B. Zwart, "Multivariate splines with nondegenerate partitions," SIAM Journal on Numerical Analysis, vol. 10, no. 4, pp. 665-673, 1973. https://doi.org/10.1137/0710058
  13. M. J. D. Powell, "Piecewise quadratic surface fitting for contour plotting," in Software for Numerical Mathematics, D. J. Evans, Ed. London: Academic Press, 1974, pp. 253-271.
  14. C. de Boor, K. Hollig, and S. Riemenschneider, Box splines. Springer-Verlag New York, Inc., 1993.
  15. G. H. Golub and C. F. V. Loan, Matrix Computations, 4th ed. Baltimore, MD, USA: Johns Hopkins University Press, Dec. 2012.
  16. R. Mehra, P. Tripathi, A. Sheffer, and N. J. Mitra, "Visibility of noisy point cloud data," Computers & Graphics, vol. 34, no. 3, pp. 219-230, 2010, shape Modelling International (SMI) Conference 2010.
  17. D.-J. Kroon, 2D Line Curvature and Normals, Aug. 2011, https://www.mathworks.com/matlabcentral/fileexchange/32696-2d-line-curvature-and-normals.
  18. E. Grinspun and A. Secord, "Introduction to discrete differential geometry: The geometry of plane curves," in ACM SIGGRAPH 2006 Courses, ser. SIGGRAPH '06. New York, NY, USA: ACM, 2006, pp. 1-4.