Comparison of Volumes between Four-Dimensional Computed Tomography and Cone-Beam Computed Tomography Images using Dynamic Phantom

호흡동조전산화단층촬영과 콘빔전산화단층촬영의 팬텀 영상 체적비교

  • Kim, Seong-Eun (Department of Radiation Oncology, Seoul national university bundang hospital) ;
  • Won, Hui-Su (Department of Radiation Oncology, Seoul national university bundang hospital) ;
  • Hong, Joo-Wan (Department of Radiation Oncology, Seoul national university bundang hospital) ;
  • Chang, Nam-Jun (Department of Radiation Oncology, Seoul national university bundang hospital) ;
  • Jung, Woo-Hyun (Department of Radiation Oncology, Seoul national university bundang hospital) ;
  • Choi, Byeong-Don (Department of Radiation Oncology, Seoul national university bundang hospital)
  • 김성은 (분당서울대학교병원 방사선종양학과) ;
  • 원희수 (분당서울대학교병원 방사선종양학과) ;
  • 홍주완 (분당서울대학교병원 방사선종양학과) ;
  • 장남준 (분당서울대학교병원 방사선종양학과) ;
  • 정우현 (분당서울대학교병원 방사선종양학과) ;
  • 최병돈 (분당서울대학교병원 방사선종양학과)
  • Received : 2016.11.01
  • Accepted : 2016.12.10
  • Published : 2016.12.30

Abstract

Purpose : The aim of this study was to compare the differences between the volumes acquired with four-dimensional computed tomography (4DCT)images with a reconstruction image-filtering algorithm and cone-beam computed tomography (CBCT) images with dynamic phantom. Materials and Methods : The 4DCT images were obtained from the computerized imaging reference systems (CIRS) phantom using a computed tomography (CT) simulator. We analyzed the volumes for maximum intensity projection (MIP), minimum intensity projection (MinIP) and average intensity projection (AVG) of the images obtained with the 4DCT scanner against those acquired from CBCT images with CT ranger tools. Results : Difference in volume for node of 1, 2 and 3 cm between CBCT and 4DCT was 0.54~2.33, 5.16~8.06, 9.03~20.11 ml in MIP, respectively, 0.00~1.48, 0.00~8.47, 1.42~24.85 ml in MinIP, respectively and 0.00~1.17, 0.00~2.19, 0.04~3.35 ml in AVG, respectively. Conclusion : After a comparative analysis of the volumes for each nodal size, it was apparent that the CBCT images were similar to the AVG images acquired using 4DCT.

목 적 : Computerized imaging reference systems 동적팬텀을이용한 cone-beamcomputed tomography(CBCT) 영상과 four-dimensionalcomputed tomography(4DCT) 영상의 체적을 비교분석 하고자 한다. 대상 및 방법 : 동적팬텀 내에 직경 1, 2, 3 cm 노드를 각각 삽입하고, CT simulator와 TruebeamSTx X-ray Imaging system을 이용하여 4DCT 영상과 CBCT 영상을 얻었다. 4DCT 영상은 maximum intensity projection(MIP), minimum intensity projection(MinIP), 그리고 average intensity projection(AVG)영상으로 재구성 하고 노드의 체적은 Eclipse system의 CT ranger tool로 CT number를 설정하여 측정하였다. 결 과 : CBCT를 기준으로 노드1, 2, 3 cm의 체적을 비교하였을 때 4DCT의 MIP는 0.54~2.33, 5.16~8.06, 9.03~20.11 ml, MinIP는 0.00~1.48, 0.00~8.47, 1.42~24.85 ml, AVG는 0.00~1.17, 0.00~2.19, 0.04~3.35 ml의 차이를 보였다. 결 론 : 노드의 체적을 비교한 결과 CBCT 영상은 4DCT의 AVG 영상과 유사한 것으로 확인되었다.

Keywords

References

  1. Underberg RW, Lagerwaard FJ, Cuijpers JP, Slotman BJ, vanSornsendeKoste JR, Senan S: Four-dimensional CT scans for treatment planning in stereotactic radiotherapy for stage I lung cancer. Int J RadiatOncolBiol Phys. 2004;60:1283-1290
  2. Persson GF, Nygaard DE, MunckAfRosenschold P, et al.: Artifacts in conventional computed tomography (CT) and free breathing four-dimensional CT induce uncertainty in gross tumor volume determination. Int J RadiatOncolBiol Phys. 2011;80:1573-1580
  3. Keall PJ, Mageras GS, Balter JM, et al.: The management of respiratory motion in radiation oncology. Report of AAPM Task Group 76. Med Phys 2006;33:3874-3900 https://doi.org/10.1118/1.2349696
  4. Li R, Lewis JH, Cervino LI, Jiang SB: 4D CT sorting based on patient internal anatomy. Phys Med Biol. 2009;54:4821-4833 https://doi.org/10.1088/0031-9155/54/15/012
  5. Vedam SS, Keall PJ, Kini VR, Mostafavi H, Shukla HP, Mohan R: Acquiring a four-dimensional computed tomography data set using an external respiratory signal. Phys Med Biol. 2003;48:45-62 https://doi.org/10.1088/0031-9155/48/1/304
  6. Wagman R, Yorke E, Ford E,et al.: Respiratory gating for liver tumors: use in dose escalation. Int J RadiatOncolBiol Phys. 2003;55:659-668
  7. Jaffray DA, Siewerdsen JH, Wong JW,Martinez AA: Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J RadiatOncolBiol Phys. 2002;53:1337-1349
  8. Lagerwaard FJ, Van Sornsen de Koste JR, Nijssen- Visser MR, et al.: Multiple "Slow"CT Scans for Incorporating Lung Tumor Mobility in Radiotherapy Planning. Int J RadiatOncolBiol Phys. 2001;51:932-937
  9. Godfrey D, Yin F, Wang Z, Yoo S, Oldham M, Willett C: Rapid low-dose 3D image-guided treatment verification of sites prone to respiratory motion using breath-hold on-board digital tomosynthesis (DTS). Med Phys 2006;33:2268
  10. Wang Z, Yin F, Marks L, Wu Q, Yoo S, Willett C: Intra- and Inter-breath-hold Position Variations for OBI Guided Amplitude Gating Treatment with Breath Hold. Med Phys 2006;33:2040
  11. Yin F, Marks L, Wang Z, et al.: A technique for conebeam CT guided stereotactic body radiation therapy. Med Phys 2006;33:2063
  12. Wang Z, Wu QJ, Marks LB, Larrier N, Yin FF: Conebeam CT localization of internal target volumes for stereotactic body radiotherapy of lung lesions. Int J RadiatOncolBiol Phys. 2007;69:1618-1624
  13. Li H, Zhu XR, Zhang L, et al.: Comparison of 2D radiographic images and 3D cone beam computed tomography for positioning head-and-neck radiotherapy patients. Int J RadiatOncolBiol Phys. 2008;71:916-925
  14. Heinzerling JH, Anderson JF, Papiez L, et al.: Four-Dimensional computed tomography scan analysis of tumor and organ motion at varying level of abdominal compression during stereotaxic treatment of lung and liver. Int J RadiatOncolBiol Phys. 2008;70:1571-1578
  15. Wunderink W, Romero AM, Osorio EM, Boer HC, Levendag PC, Heijmen BJ: Target coverage in imageguided stereotactic body radiotherapy of liver tumors. Int J RadiatOncolBiol Phys. 2007;68:282-290
  16. Matney J, Vedam S,Dong L, et al.: Is average CT a good estimate of mid-ventilation position of surrounding normal structures for proton therapy treatment planning of lung tumors?. Phys Med Biol. 2009;36:2710