• Title/Summary/Keyword: CBCT

Search Result 640, Processing Time 0.031 seconds

Evaluation of mesiodistal tooth axis using a CBCT-generated panoramic view (CBCT-재구성 파노라마영상의 근원심 치축에 관한 연구)

  • Song, In-Tae;Cho, Jin-Hyoung;Chae, Jong-Moon;Chang, Na-Young
    • The korean journal of orthodontics
    • /
    • v.41 no.4
    • /
    • pp.255-267
    • /
    • 2011
  • Objective: The purpose of this study was to confirm the reliability of a cone beam computed tomography (CBCT)-generated panoramic view based on a CBCT 3D image and to find the most helpful 2D panoramic image compared with CBCT 3D image when examining the mesiodistal tooth axis. Methods: A test model was constructed according to cephalometric norms. The test model was repeatedly repositioned for CBCT and panoramic radiographic imaging. Panoramic radiographs were acquired at each of the following 3 occlusal plane positions: $-5^{\circ}$, $0^{\circ}$, and $+5^{\circ}$. Measurements of mesiodistal tooth axis in CBCT 3D image, CBCT-generated panoramic view, and panoramic radiographs were compared. Results: Compared with the CBCT-generated panoramic view, CBCT 3D image showed significant difference in the mesiodistal tooth axis in the premolars and no significant difference in the mesiodistal tooth axis in the incisors and canines. Mesiodistal tooth axis on the CBCT-generated panoramic view was significantly different from that on panoramic radiographs. Conclusions: CBCT-generated panoramic view can be a useful tool for evaluating mesiodistal tooth axis.

IMPROVEMENT OF DOSE CALCULATION ACCURACY ON kV CBCT IMAGES WITH CORRECTED ELECTRON DENSITY TO CT NUMBER CURVE

  • Ahn, Beom Seok;Wu, Hong-Gyun;Yoo, Sook Hyun;Park, Jong Min
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.1
    • /
    • pp.17-24
    • /
    • 2015
  • To improve accuracy of dose calculation on kilovoltage cone beam computed tomography (kV CBCT) images, a custom-made phantom was fabricated to acquire an accurate CT number to electron density curve by full scatter of cone beam x-ray. To evaluate the dosimetric accuracy, 9 volumetric modulated arc therapy (VMAT) plans for head and neck (HN) cancer and 9 VMAT plans for lung cancer were generated with an anthropomorphic phantom. Both CT and CBCT images of the anthropomorphic phantom were acquired and dose-volumetric parameters on the CT images with CT density curve (CTCT), CBCT images with CT density curve ($CBCT_{CT}$) and CBCT images with CBCT density curve ($CBCT_{CBCT}$) were calculated for each VMAT plan. The differences between $CT_{CT}$ vs. $CBCT_{CT}$ were similar to those between $CT_{CT}$ vs. $CBCT_{CBCT}$ for HN VMAT plans. However, the differences between $CT_{CT}$ vs. $CBCT_{CT}$ were larger than those between $CT_{CT}$ vs. $CBCT_{CBCT}$ for lung VMAT plans. Especially, the differences in $D_{98%}$ and $D_{95%}$ of lung target volume were statistically significant (4.7% vs. 0.8% with p = 0.033 for $D_{98%}$ and 4.8% vs. 0.5% with p = 0.030 for $D_{95%}$). In order to calculate dose distributions accurately on the CBCT images, CBCT density curve generated with full scatter condition should be used especially for dose calculations in the region of large inhomogeneity.

Image quality and usefulness evaluaton of 3D-CBCT and Gated-CBCT according to baseline changes for SBRT of Lung Cancer (폐암 환자의 정위체부방사선치료 시 기준선 변화에 따른 3D-CBCT(Cone Beam Computed-Tomography)와 Gated-CBCT의 영상 품질 및 유용성 평가)

  • Han Kuk Hee;Shin Chung Hun;Lee Chung Hwan;Yoo Soon Mi;Park Ja Ram;Kim Jin Su;Yun In Ha
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.35
    • /
    • pp.41-51
    • /
    • 2023
  • Purpose: This study compares and analyzes the image quality of 3D-CBCT(Cone Beam Computed-Tomography) and Gated CBCT according to baseline changes during SBRT(Stereotactic Body RadioTherapy) in lung cancer patients to find a useful CBCT method for correcting movement due to breathing Materials and methods : Insert a solid tumor material with a diameter of 3 cm into the QUASARTM phantom. 4-Dimentional Computed-Tomography(4DCT) images were taken with a speed of the phantom at period 3 sec and a maximum amplitude of 20 mm. Using the contouring menu of the computerized treatment planning system EclipseTM Gross Tumor Volume was outlined on solid tumor material. Set-up the same as when acquiring a 4DCT image using Truebeam STxTM, breathing patterns with baseline changes of 1 mm, 3 mm, and 5 mm were input into the phantom to obtain 3D-CBCT (Spotlight, Full) and Gated-CBCT (Spotlight, Full) images five times repeatedly. The acquired images were compared with the Signal-to-Noise Ratio(SNR), Contrast-to-Noise Ratio(CNR), Tumor Volume Length, and Motion Blurring Ratio(MBR) based on the 4DCT image. Results: The average Signal-to-Noise Ratio, Contrast-to-Noise Ratio, Tumor Volume Length and Motion Blurring Ratio of Spotlight Gated CBCT images were 13.30±0.10%, 7.78±0.16%, 3.55±0.17%, 1.18±0.06%. As a result, Spotlight Gated-CBCT images according to baseline change showed better values than Spotligtht 3D-CBCT images. Also, the average Signal-to-Noise Ratio, Contrast-to-Noise Ratio, Tumor Volume Length and Motion Blurring Ratio of Full Gated CBCT images were 12.80±0.11%, 7.60±0.11%, 3.54±0.16%, 1.18±0.05%. As a result Full GatedCBCT images according to baseline change showed better values than Full 3D-CBCT images. Conclusion : Compared to 3D-CBCT images, Gated-CBCT images had better image quality according to the baseline change, and the effect of Motion Blurring Artifacts caused by breathing was small. Therefore, it is considered useful to image guided using Gated-CBCT when a baseline change occurs due to difficulty in regular breathing during SBRT that exposes high doses in a short period of time

  • PDF

Absorbed Dose and Effective Dose for Lung Cancer Image Guided Radiation Therapy(IGRT) using CBCT and 4D-CBCT (폐암 영상유도방사선 치료 시 CBCT와 4D-CBCT를 이용한 흡수선량 및 유효선량에 관한 선량 평가)

  • Kim, Dae yong;Lee, Woo Suk;Koo, Ki Lae;Kim, Joo Seob;Lee, Sang Hyeon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.1
    • /
    • pp.57-64
    • /
    • 2016
  • Purpose : To evaluate the results of absorbed and effective doses using CBCT and 4D-CBCT settings for lung cancer. Materials and Methods : This experimental study. Measurements were performed using a Anderson rando phantom with OSLD(optically stimulated luminescent dosimeters). It was performed computed tomography(Lightspeed GE, USA) in order to express the major organs of the human body. Measurements were obtained a mean value is repeated three times each. Evaluations of effective dose and absorbed dose were performed the CL-IX-Thorax mode and Truebeam-Thorax mode CBCT. Additionally, compared Truebeam-Thorax mode CBCT with Truebeam-Thorax mode 4D-CBCT(Four-dimensional Cone Beam Computed Tomography) Results : Average absorbed dose in the CBCT of CL-IX was measured in lung 2.505cGy, heart 2.595cGy, liver 2.145cGy, stomach 1.934cGy, skin 2.233cGy, in case of Truebeam, It was measured lung 1.725cGy, heart 2.034cGy, liver 1.616cGy, stomach 1.470cGy, skin 1.445cGy. In case of 4D-CBCT, It was measured lung 3.849cGy, heart 4.578cGy, liver 3.497cGy, stomach 3.179cGy, skin 3.319cGy Average effective dose, considered tissue weighting and radiation weighting, in the CBCT of CL-IX was measured lung 2.164mSv, heart 2.241mSVv, liver 0.136mSv, stomach 1.668mSv, skin 0.009mSv, in case of Turebeam, it was measured lung 1.725mSv, heart 1.757mSv, liver 0.102mSv, stomach 1.270mSv, skin 0.005mSv, In case of 4D-CBCT, It was measured lung 3.326mSv, heart 3.952mSv, liver 0.223mSv, stomach 2.747mSv, skin 0.013mSv Conclusion : As a result, absorbed dose and effective Dose in the CL-IX than Truebeam was higher about 1.3 times and in the 4D-CBCT Truebeam than CBCT of Truebeam was higher about 2.2times However, a large movement of the patient and respiratory gated radiotherapy may be more accurate treatment in 4D-CBCT. Therefore, it will be appropriate to selectively used.

  • PDF

Study on accuracy of panorama and CBCT through length measurement of wisdom teeth (사랑니 길이 측정을 통한 파노라마와 CBCT의 정확도 연구)

  • Jeong, Cheonsoo;Kim, Chongyeal
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.2
    • /
    • pp.131-136
    • /
    • 2013
  • Panorama of dental radiation generators can observe the wide anatomical structures of oral and maxillofacial areas but there can be distortion of lengths, angles, or shapes. CBCT can diagnose 3D images and get the ones whose errors by superposition and interference are remarkably smaller between anatomical structures. But the quality of the images by movement of subjects can be lowered as it takes long to diagnose them. And if there are impermeable radiation objects like metal in mouths, impermeable radiation lines can radially appear with the objects as center. This study tries to analyze accuracy of panorama and CBCT and get useful anatomical information in dental treatment by comparing the length of wisdom teeth which were measured by Panorama and CBCT with the teeth which were actually extracted and analyzing distortion of the teeth. The test result could be found that Panorama is expanded by average 7.3% as the errors of Panorama and Digital Vernier Caliper range from 110.7% to 103.9%. The length of wisdom teeth which were measured in CBCT and Digital Vernier Caliper could be found that the error range is 1.3%. And the length of wisdom teeth which were measured in Panorama and Digital Vernier Caliper has found that the error range shows 7.3%. So it could be found that the images of CBCT is about 6% more exact than those of Panorama. It could be found that CBCT shows the more exact images than those of Panorama. But because the examination expenses of CBCT are higher than those of Panorama and exposure dose of CBCT is much more than that of Panorama, it is thought to find proper ways in examination.

ACCURACY OF CONE-BEAM COMPUTED TOMOGRAPHY IN PREDICTING THE DIAMETER OF UNERUPTED TEETH (Cone-beam computed tomography를 이용한 미맹출 영구치의 계측)

  • Kim, Seong-Hee;Kim, Young-Jong;Kim, Shin;Jeong, Tae-Sung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.39 no.2
    • /
    • pp.139-144
    • /
    • 2012
  • The purpose of this study was to evaluate the accuracy and reproducibility of measuring the size of unerupted permanent tooth via cone beam computed tomography(CBCT). Ten children were scanned with dental CBCT, and 3-dimensional reconstruction of the dentitions were generated CBCT. Mesio-distal dimension and buccolingual dimension of the teeth were made directly on the model with a high-precision digitalcaliper and on the CBCT by using three-dimensional dental imaging software. Reliability and accuracy were assessed by using intraclass correlation and paired $t$-tests. ($p$ <0.05) The results were as follows : 1. Intraclass correlations were above 0.9 for Both the CBCT and the model measurements, showinghigh reliability. 2. Although there were high correlation values(r=0.91) between CBCT and model messurement methods, comparisons between the CBCT and model messurement methods showed a statistically significant difference($p$ <0.05). 3. The CBCT measurements tended to slightly underestimate by 0.2 mm. But, the systematic difference of CBCT measurements were clinically acceptable Therefore, CBCT measurement method can be used to measure the size of unerupted teeth in a sufficiently accurate way.

Planning and Evaluation of Orthognathic surgery using CBCT imaging (임상가를 위한 특집 3 - CBCT를 이용한 악교정수술 계획 수립 및 평가)

  • Choi, Jeong-Ho
    • The Journal of the Korean dental association
    • /
    • v.52 no.1
    • /
    • pp.27-36
    • /
    • 2014
  • The introduction of cone-beam computed tomography(CBCT) and computer software in dentistry has allowed orthodontists and maxillofacial surgeons to provide more accurate diagnosis and treatment. In this article, a facial asymmetry patient who had orthodontic treatment combined with orthognathic surgery using CBCT imaging is introduced and the way how CBCT imaging could be applied in clinical orthodontics and orthognathic surgery is explained. Also, evaluation of treatment outcomes using CBCT is suggested. More accurate, predictable and efficient surgical orthodontic planning and treatment are expected in the near future through cutting edge medical imaging including CBCT and CAD/CAM technologies.

Use of Reference Ear Plug to improve accuracy of lateral cephalograms generated from cone-beam computed tomography scans

  • Hwang, Hyeon-Shik;Lee, Kyung-Min;Uhm, Gi-Soo;Cho, Jin-Hyoung;McNamara, James A. Jr.
    • The korean journal of orthodontics
    • /
    • v.43 no.2
    • /
    • pp.54-61
    • /
    • 2013
  • Objective: The purpose of this study was to evaluate the effectiveness of the use of Reference Ear Plug (REP) during cone-beam computed tomography (CBCT) scan for the generation of lateral cephalograms from CBCT scan data. Methods: Two CBCT scans were obtained from 33 adults. One CBCT scan was acquired using conventional methods, and the other scan was acquired with the use of REP. Virtual lateral cephalograms created from each CBCT image were traced and compared with tracings of the real cephalograms obtained from the same subject. Results: CBCT scan with REP resulted in a smaller discrepancy between real and virtual cephalograms. In comparing the real and virtual cephalograms, no measurements significantly differed from real cephalogram values in case of CBCT scan with REP, whereas many measurements significantly differed in the case of CBCT scan without REP. Conclusion: Measurements from CBCT-generated cephalograms are more similar to those from real cephalograms when REP are used during CBCT scan. Thus, the use of REP is suggested during CBCT scan to generate accurate virtual cephalograms from CBCT scan data.

Study of Scatter Influence of kV-Conebeam CT Based Calculation for Pelvic Radiotherapy (골반 방사선 치료에서 산란이 kV-Conebeam CT 영상 기반의 선량계산에 미치는 영향에 대한 연구)

  • Yoon, KyoungJun;Kwak, Jungwon;Cho, Byungchul;Kim, YoungSeok;Lee, SangWook;Ahn, SeungDo;Nam, SangHee
    • Progress in Medical Physics
    • /
    • v.25 no.1
    • /
    • pp.37-45
    • /
    • 2014
  • The accuracy and uniformity of CT numbers are the main causes of radiation dose calculation error. Especially, for the dose calculation based on kV-Cone Beam Computed Tomography (CBCT) image, the scatter affecting the CT number is known to be quite different by the object sizes, densities, exposure conditions, and so on. In this study, the scatter impact on the CBCT based dose calculation was evaluated to provide the optimal condition minimizing the error. The CBCT images was acquired under three scatter conditions ("Under-scatter", "Over-scatter", and "Full-scatter") by adjusting amount of scatter materials around a electron density phantom (CIRS062, Tissue Simulation Technology, Norfolk, VA, USA). The CT number uniformities of CBCT images for water-equivalent materials of the phantom were assessed, and the location dependency, either "inner" or "outer" parts of the phantom, was also evaluated. The electron density correction curves were derived from CBCT images of the electron density phantom in each scatter condition. The electron density correction curves were applied to calculate the CBCT based doses, which were compared with the dose based on Fan Beam Computed Tomography (FBCT). Also, 5 prostate IMRT cases were enrolled to assess the accuracy of dose based on CBCT images using gamma index analysis and relative dose differences. As the CT number histogram of phantom CBCT images for water equivalent materials was fitted with a gaussian function, the FHWM (146 HU) for "Full-scatter" condition was the smallest among the FHWM for the three conditions (685 HU for "under scatter" and 264 HU for "over scatter"). Also, the variance of CT numbers was the smallest for the same ingredients located in the center and periphery of the phantom in the "Full-scatter" condition. The dose distributions calculated with FBCT and CBCT images compared in a gamma index evaluation of 1%/3 mm criteria and in the dose difference. With the electron density correction acquired in the same scatter condition, the CBCT based dose calculations tended to be the most accurate. In 5 prostate cases in which the mean equivalent diameter was 27.2 cm, the averaged gamma pass rate was 98% and the dose difference confirmed to be less than 2% (average 0.2%, ranged from -1.3% to 1.6%) with the electron density correction of the "Full-scatter" condition. The accuracy of CBCT based dose calculation could be confirmed that closely related to the CT number uniformity and to the similarity of the scatter conditions for the electron density correction curve and CBCT image. In pelvic cases, the most accurate dose calculation was achievable in the application of the electron density curves of the "Full-scatter" condition.

Error Analysis of Delivered Dose Reconstruction Using Cone-beam CT and MLC Log Data (콘빔 CT 및 MLC 로그데이터를 이용한 전달 선량 재구성 시 오차 분석)

  • Cheong, Kwang-Ho;Park, So-Ah;Kang, Sei-Kwon;Hwang, Tae-Jin;Lee, Me-Yeon;Kim, Kyoung-Joo;Bae, Hoon-Sik;Oh, Do-Hoon
    • Progress in Medical Physics
    • /
    • v.21 no.4
    • /
    • pp.332-339
    • /
    • 2010
  • We aimed to setup an adaptive radiation therapy platform using cone-beam CT (CBCT) and multileaf collimator (MLC) log data and also intended to analyze a trend of dose calculation errors during the procedure based on a phantom study. We took CT and CBCT images of Catphan-600 (The Phantom Laboratory, USA) phantom, and made a simple step-and-shoot intensity-modulated radiation therapy (IMRT) plan based on the CT. Original plan doses were recalculated based on the CT ($CT_{plan}$) and the CBCT ($CBCT_{plan}$). Delivered monitor unit weights and leaves-positions during beam delivery for each MLC segment were extracted from the MLC log data then we reconstructed delivered doses based on the CT ($CT_{recon}$) and CBCT ($CBCT_{recon}$) respectively using the extracted information. Dose calculation errors were evaluated by two-dimensional dose discrepancies ($CT_{plan}$ was the benchmark), gamma index and dose-volume histograms (DVHs). From the dose differences and DVHs, it was estimated that the delivered dose was slightly greater than the planned dose; however, it was insignificant. Gamma index result showed that dose calculation error on CBCT using planned or reconstructed data were relatively greater than CT based calculation. In addition, there were significant discrepancies on the edge of each beam while those were less than errors due to inconsistency of CT and CBCT. $CBCT_{recon}$ showed coupled effects of above two kinds of errors; however, total error was decreased even though overall uncertainty for the evaluation of delivered dose on the CBCT was increased. Therefore, it is necessary to evaluate dose calculation errors separately as a setup error, dose calculation error due to CBCT image quality and reconstructed dose error which is actually what we want to know.