폐암 환자의 정위적방사선 치료 시 이중 에너지를 이용한 치료 방법의 유용성 평가

Evaluation of useful treatment which uses dual-energy when curing lung-cancer patient with stereotactic body radiation therapy

  • 장형준 (가톨릭대학교 서울성모병원, 가톨릭대학교 의정부성모병원, 대구보건대학교 방사선과) ;
  • 이영규 (가톨릭대학교 서울성모병원, 가톨릭대학교 의정부성모병원, 대구보건대학교 방사선과) ;
  • 김영재 (가톨릭대학교 서울성모병원, 가톨릭대학교 의정부성모병원, 대구보건대학교 방사선과) ;
  • 박영규 (가톨릭대학교 서울성모병원, 가톨릭대학교 의정부성모병원, 대구보건대학교 방사선과)
  • Jang, Hyeong Jun (Department of Radiation Oncology, Catholic University Seoul St Mary's hospital, Department of Radiation Oncology, Catholic University Uijeongbu St Mary's hospital, Department of Radiologic Technology, Daegu Health College) ;
  • Lee, Yeong Gyu (Department of Radiation Oncology, Catholic University Seoul St Mary's hospital, Department of Radiation Oncology, Catholic University Uijeongbu St Mary's hospital, Department of Radiologic Technology, Daegu Health College) ;
  • Kim, Yeong Jae (Department of Radiation Oncology, Catholic University Seoul St Mary's hospital, Department of Radiation Oncology, Catholic University Uijeongbu St Mary's hospital, Department of Radiologic Technology, Daegu Health College) ;
  • Park, Yeong Gyu (Department of Radiation Oncology, Catholic University Seoul St Mary's hospital, Department of Radiation Oncology, Catholic University Uijeongbu St Mary's hospital, Department of Radiologic Technology, Daegu Health College)
  • 투고 : 2016.10.12
  • 심사 : 2016.12.10
  • 발행 : 2016.12.30

초록

목 적 : 종양의 위치에 따라 단일에너지를 이용한 치료계획과 이중에너지를 사용하는 치료계획을 정위적방사선 치료에 적용하여 실제 종양에 부여되는 선량의 변화와 종양과 인접한 부분에 위치하는 정상조직의 선량을 비교하여 임상적 유용성을 평가하고자 한다. 대상 및 방법 : 총 10명의 환자 CT 영상을 획득한 후 각각 단일에너지, 이중 에너지에 대한 체적변조회전치료 기법에 대한 치료 계획을 수립하였다. 종양 측 변화 요인을 분석하기 위하여 조형계수(CI)와 균질성 지수(HI), 최대 선량을 각각 계산했으며, 정상 조직에 대한 선량 분포를 비교하기 위하여 $V_{10}$$V_5$, 종양에 가장 근접한 첫 번째 ~ 네 번째 갈비뼈($1^{st}{\sim}4^{th}$ Rib), 척수(Spinal Cord), 식도(Esophagus)와 기관(Trachea)를 선정하였다. 또한 계획한 선량 분포가 실제 전달되는 정확성을 확인하기 위하여 2차원 이온전리함 배열을 이용하여 선량 측정을 시행하였다. 결 과 : 종양 측 인자의 경우 조형계수와 균질성 지수는 두 에너지를 사용했을 경우가 1에 가까운 값을 나타냈다. 최대 선량의 경우 앞쪽 흉벽은 약 2%, 등쪽 종양의 경우는 동등한 값을 나타냈다. 정상 조직의 경우 앞쪽 흉벽 종양은 인접한 갈비뼈에서 두 에너지를 동시에 사용한 경우 각각 4%, 5% 감소하였고, 기관지의 경우 11%, 17% 감소하였다. 폐의 선량 분포의 경우 $V_{10}$의 경우 1.5%, $V_5$의 경우 1%로 감소함을 나타냈다. 뒤쪽 흉벽의 경우 종양에 인접한 갈비뼈는 두 에너지를 이용한 경우에서 각각 6%, 1%, 4%, 12% 감소하였고, 폐의 선량 분포에서는 $V_{10}$ 3%, $V_5$ 3.1% 감소됨을 나타내었다. 선량 측정의 경우 모든 에너지에서 감마지표 3mm/3%의 결과에 부합하였다. 결 론 : 단일 에너지를 이용한 치료 계획 보다 두 에너지를 동시에 사용하는 경우가 표재성 종양에 대해 보다 유용하게 적용될 수 있을 것으로 사료된다.

Purpose : This study will evaluate the clinical utility by applying clinical schematic that uses monoenergy or dual energy as according to the location of tumors to the stereotactic radiotherapy to compare the change in actual dose given to the real tumor and the dose that locates adjacent to the tumor. Materials and Methods : CT images from a total of 10 patients were obtained and the clinical planning were planned based on the volumetric modulated arc therapy on monoenergy and dual energy. To analyze the change factor in the tumor, Comformity Index(CI) and Homogeneity Index(HI) and maximum dose quantity were each calculated and comparing the dose distribution on normal tissues, $V_{10}$ and $V_5$, first ~ fourth ribs closest to the tumor ($1^{st}{\sim}4^{th}$ Rib), Spinal Cord, Esophagus and Trachea were selected. Also, in order to confirm the accuracy on which the planned dose distribution is really measured, the 2-dimensional ion chamber array was used to measure the dose distribution. Results : As of the tumor factor, CI and HI showed a number close to 1 when the two energies were used. As of the maximum dose, the front chest wall showed 2% and the dorsal tumor showed equivalent value. As of normal tissue, the front chest wall tumors were reduced by 4%, 5% when both energies were used in the adjacent rib and as of trachea, reduced by 11%, 17%. As of the dose in the lung, as of $V_{10}$, it reduced by 1.5%, $V_5$ by 1%. As of the rear chest wall, when both energies were used, the ribs adjacent to the tumors showed 6%, 1%, 4%, 12% reduction, and in the lung dose distribution, $V_{10}$ reduced by 3%, and $V_5$ reduced by 3.1%. The dose measurement in all energies were in accordance to the results of Gamma Index 3mm/3%. Conclusion : It is considered that rather than using monoenergy, utilizing double energy in the clinical setting can be more effectively applied to the superficial tumors.

키워드

참고문헌

  1. Uematsu M, Shioda A, Suda A, Fukui T, Ozeki Y, Wong JR, Kusano S. Computed tomography-guided frameless stereotactic radiotherapy for stage I nonsmall-cell lung cancer: a 5-year experience. Int J Radiat Oncol Biol Phys 2001; 51: 666 -670. https://doi.org/10.1016/S0360-3016(01)01703-5
  2. Nagata Y, Negoro Y, Aoki T, Mizowaki T, Takayama K, Kokubo M, Araki N, Mitsumori M, Sasai K, Shibamoto Y, Koga S, Yano S, Hiraoka M. Clinical outcomes of 3D conformal hypofractionated single high-dose radiotherapy for one or two lung tumors using a stereotactic body frame. Int J Radiat Oncol Biol Phys 2002; 52: 1041-1046. https://doi.org/10.1016/S0360-3016(01)02731-6
  3. Hara R, Itami J, Kondo T, Aruga T, Abe Y, Ito M, Fuse M, Shinohara D, Nagaoka T, Kobiki T. Stereotactic single high dose irradiation of lung tumors under respiratory gating. Radiother Oncol 2002; 63: 159 -163. https://doi.org/10.1016/S0167-8140(02)00063-4
  4. Onishi H, Araki T, Shirato H, Nagata Y, Hiraoka M, Gomi K, Yamashita T, Niibe Y, Karasawa K, Hayakawa K, Takai Y, Kimura T, Hirokawa Y, Takeda A, Ouchi A, Hareyama M, Kokubo M, Hara R, Itami J, Yamada K. Stereotactic hypofractionated high-dose irradiation for stage I non-small cell lung carcinoma: clinical outcomes in 245 subjects in a Japanese multiinstitutional study. Cancer. 2004; 101: 1623 -1631. https://doi.org/10.1002/cncr.20539
  5. Lee SW, Choi EK, Park HJ, Ahn SD, Kim JH, Kim KJ, Yoon SM, Kim YS, Yi BY. Stereotactic body frame based fractionated radiosurgery on consecutive days for primary or metastatic tumors in the lung. Lung Cancer 2003; 40: 309 - 315. https://doi.org/10.1016/S0169-5002(03)00040-0
  6. Hiraoka M, Matsuo Y, Nagata Y Stereotactic body radiation therapy (SBRT) for early-stage lung cancer Cancer/Radioth/rapie 11 (2007) 32-35 https://doi.org/10.1016/j.canrad.2006.11.001
  7. Onishi H, Shirato H, Nagata Y, Hiraoka M, Fujino M, Gomi K, Karasawa K, Hayakawa K, Niibe Y, Takai Y, Kimura T, Takeda A, Ouchi A, Hareyama M, Kokubo M, Kozuka T, Arimoto T, Hara R, Itami J, Araki T, Stereotactic Body Radiotherapy (SBRT) for Operable Stage I Non-Small-Cell Lung Cancer: Can SBRT Be Comparable to Surgery? Int J Radiat Oncol Biol Phys 2011; December 1, 2011;81:1352-1358 https://doi.org/10.1016/j.ijrobp.2009.07.1751
  8. Nesbitt JC, Putnam JB Jr, Walsh GL, Roth JA, Mountain CF. Survival in early stage non-small cell lung cancer. Ann Thorac Surg 1995; 60: 466 - 472. https://doi.org/10.1016/0003-4975(95)00169-L
  9. Fry WA, Menck HR, Winchester DP. The National cancer data base report on lung cancer. Cancer 1996; 77: 1947- 1955. https://doi.org/10.1002/(SICI)1097-0142(19960501)77:9<1947::AID-CNCR27>3.0.CO;2-Z
  10. Wingo PA, Tong T, Bolden S. Cancer statistics, 1995. CA Cancer J Clin 1995; 45: 8 - 30. https://doi.org/10.3322/canjclin.45.1.8
  11. Nakagawa K, Aoki Y, Tago M, Terahara A, Ohtomo K. Megavoltage CT-assisted stereotactic radiosurgery for thoracic tumors: original research in the treatment of thoracic neoplasms. Int J Radiat Oncol Biol Phys 2000; 48: 449 - 457. https://doi.org/10.1016/S0360-3016(00)00617-9
  12. Hof H, Herfarth KK, Munter M, Hoess A, Motsch J, Wannenmacher M, Debus JJ. Stereotactic single dose radiotherapy of stage I non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2003; 56: 335 - 341. https://doi.org/10.1016/S0360-3016(02)04504-2
  13. Ryan B, Gang H, Siriporn S, MaryLou D, Carolyn T, Craig WS, Thomas JD, Clinical and Dosimetric Predictors of Radiation Pneumonitis in a Large Series of Patients Treated With Stereotactic Body Radiation Therapy to the Lung Int J Radiation Oncol Biol Phys, Vol. 85, No. 1, pp. 190e195, 2013 https://doi.org/10.1016/j.ijrobp.2012.03.041
  14. Voroney, JPJ. Hope, A, Dahele, MR. Purdy, T Franks, KN. Pearson, S, Cho, JB. C., Sun, A Payne, DG. Bissonnette, JP, Bezjak, A Brade, AM, Chest Wall Pain and Rib Fracture after Stereotactic Radiotherapy for Peripheral Non-small Cell Lung Cancer Journal of Thoracic Oncology: August 2009 - Volume 4 - Issue 8 - pp 1035-1037 https://doi.org/10.1097/JTO.0b013e3181ae2962
  15. Neal ED, Jing C, Gregory B.B, Wensha Y, Stanley HB, Ke S, Tracy ES, Brain DK, James ML, CHEST WALL VOLUME RECEIVING >30 GY PREDICTS RISK OF SEVERE PAIN AND/ OR RIB FRACTURE AFTER LUNG STEREOTACTIC BODY RADIOTHERAPY Int. J. Radiation Oncology Biol. Phys., Vol. 76, No. 3, pp. 796-801, 2010 https://doi.org/10.1016/j.ijrobp.2009.02.027
  16. DAVID A., SENAN S, CORNELIS J. HAASBEEK A, WILKO F., VERBAKEL R, VINCENT A, RADIOLOGICAL AND CLINICAL PNEUMO NITIS AFTER STEREOTACTIC LUNG RADIOTHERAPY: A MATCHED ANALYSIS OF THREE-DIMENSIONAL CONFORMAL AND VOLUMETRIC-MODULATED ARC THERAPY TECHNIQUES Int. J. Radiation Oncology Biol. Phys., Vol. 80, No. 2, pp. 506-513, 2011 https://doi.org/10.1016/j.ijrobp.2010.02.032
  17. Weyh A, Konski A, Nalichowsk A, Maier J, Lack D Lung SBRT: dosimetric and delivery comparison of RapidArc, TomoTherapy, and IMRT JOURNAL OF APPLIEDCLINICAL MEDICAL PHYSICS, VOLUME 14, NUMBER 4, 2013
  18. IBA Dosimetry: I'mRT MatriXX: The new standard in 2D IMRT pre-treatment verification. http://www.ibadosimetry.com