DOI QR코드

DOI QR Code

스테레오 비전을 이용한 마커리스 정합 : 특징점 추출 방법과 스테레오 비전의 위치에 따른 정합 정확도 평가

Markerless Image-to-Patient Registration Using Stereo Vision : Comparison of Registration Accuracy by Feature Selection Method and Location of Stereo Bision System

  • 주수빈 (성균관대학교 바이오메카트로닉스학과) ;
  • 문정환 (성균관대학교 바이오메카트로닉스학과) ;
  • 신기영 (한국전기연구원)
  • Joo, Subin (Department of Bio-Mechatronic Engineering, Sungkyunkwan University) ;
  • Mun, Joung-Hwan (Department of Bio-Mechatronic Engineering, Sungkyunkwan University) ;
  • Shin, Ki-Young (Korea Electrotechnology Research Institute)
  • 투고 : 2015.09.10
  • 심사 : 2015.12.28
  • 발행 : 2016.01.25

초록

본 논문에서는 얼굴 영역 수술용 네비게이션을 위한 스테레오 비전과 CT 영상을 이용하여 환자-영상 간 정합(Image to patient registration) 알고리즘의 성능을 평가한다. 환자 영상 간 정합은 스테레오 비전 영상의 특징점 추출과 이를 통한 3차원 좌표 계산, 3차원 좌표와 3차원 CT 영상과의 정합 과정을 거친다. 스테레오 비전 영상에서 3가지 얼굴 특징점 추출 방법과 3가지 정합 방법을 사용하여 생성될 수 있는 5가지 조합 중 정합 정확도가 가장 높은 방법을 평가한다. 또한 머리의 회전에 따라 환자 영상 간 정합의 정확도를 비교한다. 실험을 통해 머리의 회전 각도가 약 20도의 범위 내에서 Active Appearance Model과 Pseudo Inverse Matching을 사용한 정합의 정확도가 가장 높았으며, 각도가 20도 이상일 경우 Speeded Up Robust Features와 Iterative Closest Point를 사용하였을 때 정합 정확도가 높았다. 이 결과를 통해 회전각도가 20도 범위 내에서는 Active Appearance Model과 Pseudo Inverse Matching 방법을 사용하고, 20도 이상의 경우 Speeded Up Robust Features와 Iterative Closest Point를 이용하는 것이 정합의 오차를 줄일 수 있다.

This study evaluates the performance of image to patient registration algorithm by using stereo vision and CT image for facial region surgical navigation. For the process of image to patient registration, feature extraction and 3D coordinate calculation are conducted, and then 3D CT image to 3D coordinate registration is conducted. Of the five combinations that can be generated by using three facial feature extraction methods and three registration methods on stereo vision image, this study evaluates the one with the highest registration accuracy. In addition, image to patient registration accuracy was compared by changing the facial rotation angle. As a result of the experiment, it turned out that when the facial rotation angle is within 20 degrees, registration using Active Appearance Model and Pseudo Inverse Matching has the highest accuracy, and when the facial rotation angle is over 20 degrees, registration using Speeded Up Robust Features and Iterative Closest Point has the highest accuracy. These results indicate that, Active Appearance Model and Pseudo Inverse Matching methods should be used in order to reduce registration error when the facial rotation angle is within 20 degrees, and Speeded Up Robust Features and Iterative Closest Point methods should be used when the facial rotation angle is over 20 degrees.

키워드

참고문헌

  1. Seon-Tae Kim, "Medical Management of Chronic Rhinosinusitis," Korean Journal of Otorhinolaryngology, Vol. 54, no. 11, pp. 746-754, November 2011.
  2. K. K. Min, J. H. Yoon, J. H. Jung, C. Y. Lim, I. G. Kang and S. T. Kim, "The Effect of Intensive Therapy Using Nebulized Antibiotics after Endoscpic Sinus Surgery," Korean Journal of Otorhinolaryngology, Vol. 51, no. 7, pp. 623-629, July 2008.
  3. B. Kim, H. Lee, H. Song, T. Kim, M. Han and G. Oh, "Clinical Manifestations of Intracranial Complication Associated With Paranasal Sinus Infection," Journal of the Korean Neurological Association, Vol. 19, no. 5, pp. 457-463, 2001.
  4. G. Strau, K. Koulechov, S. Rottger, J. Bahner, C. Trantakis, M. Hofer, W. Korb, O. Burgert, J. Meixensberger, D. Manzey, A. Dietz and T. Luth, "Evaluation of a navigation system for ENT with surgical efficiency criteria," The Laryngoscope, vol. 116, no. 4, pp. 564-572, April 2006. https://doi.org/10.1097/01.MLG.0000202091.34295.05
  5. M. Yin, X. Shen, Y. Hu, and X. Fang, "An Automatic Registration Method Based on Fiducial Marker for Image Guided Neurosurgery System," AsiaSim 2013. Springer Berlin Heidelberg, pp. 114-125, 2013.
  6. 이종원, 정완균, "차세대 척추수술 로봇 기술의 현황과 전망," 대한전자공학회, 제38권, 제11호, 55-60쪽, 2011년 11월.
  7. J. Wang, H. Suenaga, K. Hoshi, L. Yang, E. Kobayashi, I. Sakuma, and H. Liao, "Augmented reality navigation with automatic marker-free image registration using 3-D image overlay for dental surgery," Biomedical Engineering, IEEE Transactions on, Vol. 61, no. 4, pp. 1295-1304, 2014. https://doi.org/10.1109/TBME.2014.2301191
  8. J. D. Lee, C. H. Huang, T. C. Huang, H. Y. Hsieh, and S. T. Lee, "Medical augment reality using a markerless registration framework," Expert Systems with Applications, Vol. 39, no. 5, pp. 5286-5294, 2012. https://doi.org/10.1016/j.eswa.2011.11.009
  9. O. Makiese, P. Pillai, A. Salma, S. Sammet, and M. Ammirati, "Accuracy validation in a cadaver model of cranial neuronavigation using a surface autoregistration mask." Neurosurgery, Vol. 67, no. 3, ons85-ons90, 2010.
  10. Bilsky, M. H., Bentz, B., Vitaz, T., Shah, J., & Kraus, D. "Craniofacial resection for cranial base malignancies involving the infratemporal fossa," Neurosurgery, Vol. 57, (4 Suppl), pp. 339-347, 2005.
  11. P. Cappabianca, L. Califano, and G. Iaconetta, "Cranial, craniofacial and skull base surgery," Springer, 2010.
  12. C. Harris, and M. Stephens, "A combined corner and edge detector," In Alvey vision conference, Vol. 15, pp. 50, August 1988.
  13. H. Bay, T. Tuytelaars, and L. Van Gool, "Surf: Speeded up robust features," In Computer vision-ECCV 2006 (pp. 404-417). Springer Berlin Heidelberg, 2006.
  14. Y. Pang, W. Li, Y. Yuan, and J. Pan, "Fully affine invariant SURF for image matching," Neurocomputing, Vol. 85, pp. 6-10, 2012. https://doi.org/10.1016/j.neucom.2011.12.006
  15. G. Tzimiropoulos, and M. Pantic, "Optimization problems for fast aam fitting in-the-wild," In Computer Vision (ICCV), 2013 IEEE International Conference on (pp. 593-600), IEEE, December 2013.
  16. B. Lee, C. Kim and R. Park, "Derivation of a Confidence Matrix for Orientation Components in the ICP Algorithm," Journal of the Korean Institute of Telematics and Electronics S. S, Vol. 35, no. 12, pp. 69-76, September 1998.
  17. M. Staroswiecki, "Fault tolerant control: the pseudo-inverse method revisited," In 23h IFAC World Congress (No. 2), July 2005.
  18. K. Y. Shin, and J. H. Mun, "A multi-camera calibration method using a 3-axis frame and wand," International Journal of Precision Engineering and Manufacturing, Vol. 13, no. 2, pp. 283-289, 2012. https://doi.org/10.1007/s12541-012-0035-1
  19. S. Lee, Y. Han and H. Hahn, "A New Stereo Matching Method based on Reliability Space," Journal of The Institute of Electronics Engineers of Korea SP, Vol. 6, pp. 82-90, November 2010.
  20. Melfi, R., Kondra, S., & Petrosino, A. (2013). Human activity modeling by spatio temporal textural appearance. Pattern Recognition Letters, 34(15), 1990-1994. https://doi.org/10.1016/j.patrec.2013.04.025
  21. A. Ahmadian, A. F. Kazerooni, S. Mohagheghi, K. A. Khoiy, and M. S. Hosseini, "A region-based anatomical landmark configuration for sinus surgery using image guided navigation system: A phantom-study," Journal of Cranio-Maxillofacial Surgery, Vol. 42, no. 6, pp. 816-824, 2014. https://doi.org/10.1016/j.jcms.2013.11.019
  22. T. Sim, H. Kwon, S. E. Oh, S. B. Joo, A. Choi, H. M. Heo, K. Kisun, and J. H. Mun, "Predicting Complete Ground Reaction Forces and Moments During Gait With Insole Plantar Pressure Information Using a Wavelet Neural Network," Journal of biomechanical engineering, Vol. 137, no. 9, 2015.
  23. T. F. Cootes, G. V. Wheeler, K. N. Walker, and C. J. Taylor, "View-based active appearance models," Image and vision computing, Vol. 20, no. 9, pp. 657-664, 2002. https://doi.org/10.1016/S0262-8856(02)00055-0