• Title/Summary/Keyword: Markerless registration

Search Result 6, Processing Time 0.017 seconds

Application of Calibration Techniques to Enhance Accuracy of Markerless Surgical Robotic System for Intracerebral Hematoma Surgery (뇌혈종 제거 수술을 위한 무마커 수술 유도 로봇 시스템의 정확도 향상을 위한 캘리브레이션 기법)

  • Park, Kyusic;Yoon, Hyon Min;Shin, Sangkyun;Cho, Hyunchul;Kim, Youngjun;Kim, Laehyun;Lee, Deukhee
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.3
    • /
    • pp.246-253
    • /
    • 2015
  • In this paper, we propose calibration methods that can be applied to the markerless surgical robotic system for Intracerebral Hematoma (ICH) Surgery. This surgical robotic system does not require additional process of patient imaging but only uses CT images that are initially taken for a diagnosis purpose. Furthermore, the system applies markerless registration method other than using stereotactic frames. Thus, in overall, our system has many advantages when compared to other conventional ICH surgeries in that they are non-invasive, much less exposed to radiation exposure, and most importantly reduces a total operation time. In the paper, we specifically focus on the application of calibration methods and their verification which is one of the most critical factors that determine the accuracy of the system. We implemented three applications of calibration methods between the coordinates of robot's end-effector and the coordinates of 3D facial surface scanner, based on the hand-eye calibration method. Phantom tests were conducted to validate the feasibility and accuracy of our proposed calibration methods and the surgical robotic system.

Markerless Image-to-Patient Registration Using Stereo Vision : Comparison of Registration Accuracy by Feature Selection Method and Location of Stereo Bision System (스테레오 비전을 이용한 마커리스 정합 : 특징점 추출 방법과 스테레오 비전의 위치에 따른 정합 정확도 평가)

  • Joo, Subin;Mun, Joung-Hwan;Shin, Ki-Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.1
    • /
    • pp.118-125
    • /
    • 2016
  • This study evaluates the performance of image to patient registration algorithm by using stereo vision and CT image for facial region surgical navigation. For the process of image to patient registration, feature extraction and 3D coordinate calculation are conducted, and then 3D CT image to 3D coordinate registration is conducted. Of the five combinations that can be generated by using three facial feature extraction methods and three registration methods on stereo vision image, this study evaluates the one with the highest registration accuracy. In addition, image to patient registration accuracy was compared by changing the facial rotation angle. As a result of the experiment, it turned out that when the facial rotation angle is within 20 degrees, registration using Active Appearance Model and Pseudo Inverse Matching has the highest accuracy, and when the facial rotation angle is over 20 degrees, registration using Speeded Up Robust Features and Iterative Closest Point has the highest accuracy. These results indicate that, Active Appearance Model and Pseudo Inverse Matching methods should be used in order to reduce registration error when the facial rotation angle is within 20 degrees, and Speeded Up Robust Features and Iterative Closest Point methods should be used when the facial rotation angle is over 20 degrees.

A Study on Pipe Model Registration for Augmented Reality Based O&M Environment Improving (증강현실 기반의 O&M 환경 개선을 위한 배관 모델 정합에 관한 연구)

  • Lee, Won-Hyuk;Lee, Kyung-Ho;Lee, Jae-Joon;Nam, Byeong-Wook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.3
    • /
    • pp.191-197
    • /
    • 2019
  • As the shipbuilding and offshore plant industries grow larger and more complex, their maintenance and inspection systems become more important. Recently, maintenance and inspection systems based on augmented reality have been attracting much attention for improving worker's understanding of work and efficiency, but it is often difficult to work with because accurate matching between the augmented model and reality information is not. To solve this problem, marker based AR technology is used to attach a specific image to the model. However, the markers get damaged due to the characteristic of the shipbuilding and offshore plant industry, and the camera needs to be able to detect the entire marker clearly, and thus requires sufficient space to exist between the operator. In order to overcome the limitations of the existing AR system, in this study, a markerless AR was adopted to accurately recognize the actual model of the pipe system that occupies the most processes in the shipbuilding and offshore plant industries. The matching methodology. Through this system, it is expected that the twist phenomenon of the augmented model according to the attitude of the real worker and the limited environment can be improved.

In Vivo Three-dimensional Evaluation of the Functional Length of Glenohumeral Ligaments

  • Goto, Akira;Sahara, Wataru;Koishi, Hayato;Yoshikawa, Hideki;Sugamoto, Kazuomi
    • The Academic Congress of Korean Shoulder and Elbow Society
    • /
    • 2009.03a
    • /
    • pp.174-174
    • /
    • 2009
  • The acromioclavicular-hook-plate is one of the surgical treatments for distal clavicle fracture and traumatic acromioclavicular (AC) joint dislocation. Although this procedure can obtain rigid and accurate anatomical reduction of the AC joint, secondary widening of the hook-hole in the acromion is often seen during postoperative follow-up. This complication is owing to the high-degree of mobility of the AC joint. Therefore, it is important to evaluate the effect on these complications due to the position of the hook-hole. The purpose of the present study is to investigate three-dimensionally the effect due to the position of the hook-hole during arm abduction motion. We studied in vivo and three-dimensional kinematics of the normal shoulder joint with use of a markerless bone-registration technique. Magnetic resonance images of 14 shoulders of 7 healthy volunteers were acquired in 7 positions between $0^{\circ}$ and $180^{\circ}$ of abduction. We created three-dimensional computer models of the bones and the acromioclavicular-hook-plate. Based on the three-dimensional kinematics data, we simulated the widening of the hook-hole each different positioning of the hook-hole. The widths of the hook-holes almost linearly increased. And these widths significantly increased, when we put the hook-hole on the acromion from AC joint to 20 mm and 25 mm posterior position.

  • PDF

In Vivo Three-Dimensional Evaluation of the Functional Length of Glenohumeral Ligaments

  • Yang, Chen;Goto, Akira;Sahara, Wataru;Koishi, Hayato;Yoshikawa, Hideki;Sugamoto, Kazuomi
    • The Academic Congress of Korean Shoulder and Elbow Society
    • /
    • 2009.03a
    • /
    • pp.43-43
    • /
    • 2009
  • Glenohumeral ligaments play an important role in stabilizing the shoulder. However, it is impossible to know how they function in vivo during shoulder motion. To help elucidate this stabilizing role, we conducted in vivo three-dimensional kinematics of the normal shoulder joint using a markerless bone-registration technique. Magnetic resonance images of 14 shoulder joints of 7 healthy volunteers were acquired for 7 isometric abduction positions between $0^{\circ}$ and $180^{\circ}$. We then calculated three-dimensional shortest paths between the origin and insertion of each ligament based on anatomical study in each abduction position. At $0^{\circ}$ of abduction, the posterior band of the coracohumeral ligament displayed the maximum length. At $30^{\circ}$ of abduction, the superior glenohumeral ligament displayed the maximum length. At $60^{\circ}$ of abduction, the anterior band of the coracohumeral ligament and the middle glenohumeral ligament displayed the maximum length. At $120^{\circ}$ of abduction, the anterior band of the inferior glenohumeral ligament displayed the maximum length. We think that the maximum length of these results is an important influence on the function of the soft tissue stabilizer.

  • PDF

Augmented Reality System using Planar Natural Feature Detection and Its Tracking (동일 평면상의 자연 특징점 검출 및 추적을 이용한 증강현실 시스템)

  • Lee, A-Hyun;Lee, Jae-Young;Lee, Seok-Han;Choi, Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.49-58
    • /
    • 2011
  • Typically, vision-based AR systems operate on the basis of prior knowledge of the environment such as a square marker. The traditional marker-based AR system has a limitation that the marker has to be located in the sensing range. Therefore, there have been considerable research efforts for the techniques known as real-time camera tracking, in which the system attempts to add unknown 3D features to its feature map, and these then provide registration even when the reference map is out of the sensing range. In this paper, we describe a real-time camera tracking framework specifically designed to track a monocular camera in a desktop workspace. Basic idea of the proposed scheme is that a real-time camera tracking is achieved on the basis of a plane tracking algorithm. Also we suggest a method for re-detecting features to maintain registration of virtual objects. The proposed method can cope with the problem that the features cannot be tracked, when they go out of the sensing range. The main advantage of the proposed system are not only low computational cost but also convenient. It can be applicable to an augmented reality system for mobile computing environment.