DOI QR코드

DOI QR Code

Effect of The Addition of Various Cellulose Nanofibers on The Properties of Sheet of Paper Mulberry Bast Fiber

각종 셀룰로오스 나노섬유의 첨가가 닥나무 인피섬유 시트의 특성에 미치는 영향

  • Han, Song-Yi (Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University) ;
  • Park, Chan-Woo (Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University) ;
  • Kim, Bo-Yeon (Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University) ;
  • Lee, Seung-Hwan (Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University)
  • 한송이 (강원대학교 산림환경과학대학 산림바이오소재공학과) ;
  • 박찬우 (강원대학교 산림환경과학대학 산림바이오소재공학과) ;
  • 김보연 (강원대학교 산림환경과학대학 산림바이오소재공학과) ;
  • 이승환 (강원대학교 산림환경과학대학 산림바이오소재공학과)
  • Received : 2015.08.05
  • Accepted : 2015.09.08
  • Published : 2015.11.25

Abstract

Various cellulose nanofibers (CNF) with different morphology and chemical properties were prepared for the reinforcement of sheet of paper mulberry bast fiber. Lignocellulose nanofiber (LCNF), Holocellulose nanofiber (HCNF), alkali-treated HCNF (AT-HCNF), TEMPO-oxidated nanofiber (TEMPO-NF) and cellulose nanocrystal (CNF) were prepared and their addition effect on the properties of sheet of paper mulberry bast fiber were investigated. Air permeability, surface smoothness, and tensile properties were improved by increasing CNF addition. Its improvement may be due to the CNF deposited between and on paper mulberry bast fibers, which was confirmed by SEM observation.

본 연구는 셀룰로오스 나노섬유를 닥나무 인피섬유 시트의 제조시 첨가하여, 닥나무 인피섬유 시트의 특성에 미치는 영향을 조사하였다. 형태학적 및 화학적 성질이 다른 5종류의 셀룰로오스 나노섬유, 즉 리그노셀룰로오스 나노섬유 (lignocellulose nanofiber, LCNF), 홀로셀룰로오스 나노섬유(holocellulose nanofiber, HCNF), 알칼리처리 홀로셀룰로오스 나노섬유(alkali-treated HCNF, AT-HCNF), TEMPO-산화 나노섬유(TEMPO-oxidated nanofiber, TEMPO-NF), 셀룰로오스 나노크리스탈(cellulose nanocrystal, CNC)을 제조하였으며, 각 나노섬유의 종류 및 첨가량이 닥나무 인피섬유시트 제조시의 여수시간 및 시트의 투기도, 평활도, 인장강도 특성에 미치는 영향을 조사하였다. 여수시간은 모든 나노섬유에 있어서 첨가량이 증가함으로서 길어졌으며, 5%의 첨가량에서 HCNF가 가장 여수시간이 길었다. 또한, 셀룰로오스 나노섬유 첨가량이 증가할수록 시트의 평활도, 인장강도 특성이 향상되었으며, 특히 0.1%의 극히 적은양의 나노섬유 첨가로도 비인장강도 및 탄성계수가 크게 향상되는 것을 알 수 있었다. 이러한 특성 향상은 닥나무 인피섬유 간에 교차적으로 적층되어 있는 셀룰로오스 나노섬유의 충전 효과에 기인하는 것을 전자현미경 사진을 통해 확인할 수 있었다.

Keywords

References

  1. Abdul Khalil, H.P.S., Bhat, A.H., Ireana Yusra, A.F. 2012. Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate Polymers 87: 963-979. https://doi.org/10.1016/j.carbpol.2011.08.078
  2. Abitbol, T., Kloser, E. Gray, D.G. 2013. Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis. Cellulose 20(2): 785-794. https://doi.org/10.1007/s10570-013-9871-0
  3. Agoda-Tandjawa, G., Durand, S., Berot, S., Blassel, C., Gaillard, C., Garnier, C., Doublier, J.L. 2010. Rheological characterization of microfibrillated cellulose suspensions after freezing. Carbohydrate Polymers 80: 677-686. https://doi.org/10.1016/j.carbpol.2009.11.045
  4. Azeredo, H.M.C. 2009. Nanocomposites for food packaging applications. Food Research International 42: 1240-1253. https://doi.org/10.1016/j.foodres.2009.03.019
  5. Cherian, B.M., Leao, A.L., Souza, S.F., Costa, L.M.M., Olyveira, G.M., Kottaisamy, M., Nagarajan, E.R., Thomas, S. 2011. Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydrate Polymers 86: 1790-1798. https://doi.org/10.1016/j.carbpol.2011.07.009
  6. Choi, T.H., Cho, N.S. 1996. New korean traditional papermaking from paper mulberry (I) - Pulping characteristics of Broussonetia kazinoki Siebold -, Journal of Korea TAPPI 28(1): 49-59.
  7. Elazzouzi-Hafraoui, S., Nishiyama, Y., Putaux, J.L., Heux, L., Dubreuil, F., Rochas, C. 2008. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9: 57-65. https://doi.org/10.1021/bm700769p
  8. Fukuzumi, H., Saito, T., Iwata, T., Kumamoto, Y., Isogai, A. 2009. Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10: 162-165. https://doi.org/10.1021/bm801065u
  9. Habibi, Y., Lucia, L.A., Rojas, O.J. 2010. Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chemical Reviews 110(6): 3479-3500. https://doi.org/10.1021/cr900339w
  10. Henriksson, M., Berglund, L.A., Isaksson, P., Lindstrom, T., Nishino, T. 2008. Cellulose nanopaper structures of high toughness. Biomacromolecules 9: 1579-1585. https://doi.org/10.1021/bm800038n
  11. Isogai, A. 2013. Wood nanocelluloses: Fundamentals and applications as new bio-based nanomaterials. J. Wood Sci. 59: 449-459. https://doi.org/10.1007/s10086-013-1365-z
  12. Iwamoto, S., Nakagaito, A.N., Yano, H. 2007. Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl. Phys. A 89: 461-466. https://doi.org/10.1007/s00339-007-4175-6
  13. Iwamoto, S., Yamamoto, S., Lee, S.H., Ito, H., Endo, T. 2014. Mechanical and thermal properties of polypropylene composites reinforced with lignocellulose nanofibers dried in melted ethylene-butene copolymer. Materials 7: 6919-6929. https://doi.org/10.3390/ma7106919
  14. Kargarzadeh, H., Ahmad, I., Abdullah, I., Dufresne, A., Zainudin, S. Y., Sheltami, R. M. 2012. Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fiber. Cellulose 19: 855-866. https://doi.org/10.1007/s10570-012-9684-6
  15. Kwon, O.H., Kim, H.C. 2011. Preliminary study on automation of bark peeling process for paper mulberry, Journal of Korea TAPPI 43(4): 59-66.
  16. Lavoine, N., Desloges, I., Dufresne, A., Bras, J. 2012. Microfibrillated cellulose-Its barrier properties and applications in cellulosic materials: A review. Carbohydrate Polymers 90: 735-764. https://doi.org/10.1016/j.carbpol.2012.05.026
  17. Lee, H.V., Hamid, S.B.A., Zain, S.K. 2014. Conversion of lignocellulosic biomass to nanocellulose: Structure and chemical process. The Scientific World Journal 2014: 1-20.
  18. Lee, M.G., Yun, S.R., Kim, M.J. 2006. Dyeing of Hanji using Kenaf and improvement of printability. Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference 10: 233-239.
  19. Lee, S.H., Chang, F., Inoue, S., Endo, T. 2010. Increase in enzyme accessibility by generation of nanospace in cell wall supramolecular structure. Bioresource Technology 101: 7218-7223. https://doi.org/10.1016/j.biortech.2010.04.069
  20. Lee, S.H., Inoue, S., Teramoto, Y., Endo, T. 2010. Enzymatic saccharification of woody biomass micro/nanofibrillated by continuous extrusion process II: Effect of hot-compressed water treatment. Bioresource Technology 101: 9645-9649. https://doi.org/10.1016/j.biortech.2010.07.068
  21. Li, M.C., Wu, Q., Song, K., Qing, Y., Wu, Y. 2015. Cellulose nanoparticles as modifiers for rheology and fluid loss in bentonite water-based fluids. ACS Appl. Mater. Interfaces 7: 5006-5016. https://doi.org/10.1021/acsami.5b00498
  22. Lu, P., Hsieh, Y.L. 2010. Preparation and properties of cellulose nanocrystals: Rods, spheres, and network. Carbohydrate Polymers 82: 329-336. https://doi.org/10.1016/j.carbpol.2010.04.073
  23. Nogi, M., Yano, H. 2008. Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv. Mater. 20: 1849-1852. https://doi.org/10.1002/adma.200702559
  24. Okahisa, Y., Abe, K., Nogi, M., Nakagaito, A.N., Nakatani, T., Yano, H. 2011. Effects of delignification in the production of plant-based cellulose nanofibers for optically transparent nanocomposites. Composites Science and Technology 71(10): 1342-1347. https://doi.org/10.1016/j.compscitech.2011.05.006
  25. Park, C.W., Lee, S.H., Han, S.Y., Kim, B.Y., Jang, J.H., Kim, N.H., Lee, S.H. 2015. Effect of different delignification degrees of korean white pine wood on fibrillation efficiency and tensile properties of nanopaper. J. Korean Wood Sci. Technol. 43(1): 17-24. https://doi.org/10.5658/WOOD.2015.43.1.17
  26. Park, S.C., Lim, H.A., Oh, S.W. 2014. Study of functional of hanji using ceramic from Broussonetia kazinoki Sieb. Journal of Agriculture & Life Science 48(3): 53-61. https://doi.org/10.14397/jals.2014.48.3.53
  27. Qing, Y., Sabo, R., Zhu, J.Y., Agarwal, U., Cai, Z., Wu, Y. 2013. A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydrate Polymers 97: 226-234. https://doi.org/10.1016/j.carbpol.2013.04.086
  28. Saito, T., Kimura, S., Nishiyama, Y., Isogai, A. 2007. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8: 2485-2491. https://doi.org/10.1021/bm0703970
  29. Salas, C., Nypelo, T., Rodriquez-Abreu, C., Carrillo, C., Rojas, O.J. 2014. Nanocellulose properties and applications in colloids and interfaces. Current Opinion in Colloid & Interface Science 19: 383-396. https://doi.org/10.1016/j.cocis.2014.10.003
  30. Siqueira, G., Bras, J., Dufresne, A. 2010. Cellulosic bionanocomposites: A review of preparation, properties and applications. Polymers 2: 728-765. https://doi.org/10.3390/polym2040728
  31. Siro, I., Plackett, D. 2010. Microfibrillated cellulsoe and new nanocomposite materials: A review. Cellulose 17: 459-494. https://doi.org/10.1007/s10570-010-9405-y
  32. Yoon, S.L., Kim, H.J. 2002. Manufacturing of color hanji using bast fibers stained dyed by two reactive dyes. Journal of Korea TAPPI 34(4): 44-50.