Mechanical and Thermal Properties of Hydroxypropyl Cellulose/TEMPO-oxidized Cellulose Nanofibril Composite Films

Hydroxypropyl cellulose/TEMPO-산화 처리된 셀룰로오스 나노섬유를 이용한 복합필름의 기계적 및 열적 특성

  • Jo, Yu-Jeong (Department of Forest Products, Korea Forest Research Institute) ;
  • Cho, Hye-Jung (Department of Forest Products, Korea Forest Research Institute) ;
  • Chun, Sang-Jin (Department of Forest Products, Korea Forest Research Institute) ;
  • Lee, Sun-Young (Department of Forest Products, Korea Forest Research Institute)
  • 조유정 (국립산림과학원 임산공학부) ;
  • 조혜정 (국립산림과학원 임산공학부) ;
  • 전상진 (국립산림과학원 임산공학부) ;
  • 이선영 (국립산림과학원 임산공학부)
  • Received : 2015.08.07
  • Accepted : 2015.09.09
  • Published : 2015.11.25


Hydroxypropyl cellulose (HPC) composite films filled with TEMPO-oxidized cellulose nanofibrils (TOCN) were prepared in this study. In order to investigate mechanical and thermal properties of HPC/TOCN composite films, tensile strength and thermogravimetric analysis (TGA) wer performed. As the loading level of TOCN increased, the tensile strength and modulus increased significantly. However, thermal stability of HPC/TOCN composite films was not related to the loading levels of the TOCN.

본 연구에서는 HPC (hydroxypropyl cellulose)와 TEMPO 산화된 셀룰로오스 나노섬유(Tempo-oxidized cellulose nanofibrils, TOCN)가 보강된 복합필름을 제조하였다. 복합필름의 기계적, 열적 특성을 관찰하기 위해 인장강도 및 열중량 분석기(TGA)를 측정하였다. HPC/TOCN 복합필름에서 TOCN의 함량이 1 wt%에서 5 wt%까지 증가할수록 인장강도와 인장탄성계수는 직선적으로 증가하는 경향을 보였다. 그러나 TGA 분석 결과, TOCN의 함량에 관계없이 HPC/TOCN 복합필름의 열 안정성은 거의 차이가 없었다.



  1. Cho, M.J., Park, B.D. 2010. Current research on nanocellulose-reinforced nanocomposites. Journal of Korean Wood Science and Technology 38(6): 587-601.
  2. Darja J., Robert V., Vanja K. 2015. Introduction of aldehyde vs. carboxylic groups to cellulose nanofibersusing laccase/TEMPO mediated oxidation. Carbohydrate Polymers 116: 74-85.
  3. Gilberto S., Julien B., Alain D. 2010. Cellulosic Bionanocomposites: A review of preparation, properties and applications. Polymers 2: 728-765.
  4. Hayaka F., Tsuguyuki S., Akira I. 2013. Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Carbohydrate Polymers 93(1): 172-177.
  5. Jang, J.H., Lee S.H., Kim, N.H. 2014. Preparation of lignocellulose nanofibers from Korean white pine and its application to polyurethane nanocomposite. Journal of Korean Wood Science and Technology 42(6): 700-707.
  6. Lee S.Y., Chun S.J., Kang I.A., Park J.Y. 2009a. Preparation of cellulose nanofibrils by high-pressure homogenizer and cellulose-based composite films. Journal of industrial and engineering chemistry 15(1): 50-55.
  7. Lee, S.Y., Mohan D.J., Kang I.A., Doh G.H., Lee S, Han S.O. 2009b. Nanocellulose reinforced PVA composite films: Effects of acid treatment and filler loading. Fibers and Polymers 10(1): 77-82.
  8. Masayuki H., Naoyuki T., Tsuguyuki S., Akira I. 2009. Oxidation of regenerated cellulose with $NaClO_2$ catalyzed by TEMPO and NaClO under acid-neutral conditions. Carbohydrate Polymers 78: 330-335.
  9. Nathalie L., Isabelle D., Alain D., Julien B. 2012. Microfibrillated cellulose - Its barrier properties and applications in cellulosic materials: A review. Carbohydrate Polymers 90: 735-764.
  10. Park, B.D., Um, I.C., Lee, S.Y., Dufresne, A. 2014. Preparation and characterization of cellulose nanofibril/polyvinyl alcohol composite nanofibers by electrospinning. J. Korean Wood Science and Technology 42(2): 119-129.
  11. Reina T., Tsuguyuki S., Akira I. 2012. Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NaClO/$NaClO_2$ systems in water at pH 4.8 or 6.8. International Journal of Biological Macromolecules 51(3): 228-234.
  12. Shibata I., Isogai A. 2003. Depolymerization of cellouronic acid during TEMPO-mediated oxidation. Cellulose 10(2): 151-158.
  13. Gamelas J.F.G., Pedrosa, J., Lourenco A.F.L., Mutje, P., Gonzalez, I., Chinga-Carrasco, G., Singh, G., Ferreira P. 2015. On the morphology of cellulose nanofibrils obtained by TEMPO-mediated oxidation and Mechanical treatment. Micron 72: 28-33.