DOI QR코드

DOI QR Code

Mechanical and Thermal Properties of Hydroxypropyl Cellulose/TEMPO-oxidized Cellulose Nanofibril Composite Films

Hydroxypropyl cellulose/TEMPO-산화 처리된 셀룰로오스 나노섬유를 이용한 복합필름의 기계적 및 열적 특성

  • Jo, Yu-Jeong (Department of Forest Products, Korea Forest Research Institute) ;
  • Cho, Hye-Jung (Department of Forest Products, Korea Forest Research Institute) ;
  • Chun, Sang-Jin (Department of Forest Products, Korea Forest Research Institute) ;
  • Lee, Sun-Young (Department of Forest Products, Korea Forest Research Institute)
  • 조유정 (국립산림과학원 임산공학부) ;
  • 조혜정 (국립산림과학원 임산공학부) ;
  • 전상진 (국립산림과학원 임산공학부) ;
  • 이선영 (국립산림과학원 임산공학부)
  • Received : 2015.08.07
  • Accepted : 2015.09.09
  • Published : 2015.11.25

Abstract

Hydroxypropyl cellulose (HPC) composite films filled with TEMPO-oxidized cellulose nanofibrils (TOCN) were prepared in this study. In order to investigate mechanical and thermal properties of HPC/TOCN composite films, tensile strength and thermogravimetric analysis (TGA) wer performed. As the loading level of TOCN increased, the tensile strength and modulus increased significantly. However, thermal stability of HPC/TOCN composite films was not related to the loading levels of the TOCN.

본 연구에서는 HPC (hydroxypropyl cellulose)와 TEMPO 산화된 셀룰로오스 나노섬유(Tempo-oxidized cellulose nanofibrils, TOCN)가 보강된 복합필름을 제조하였다. 복합필름의 기계적, 열적 특성을 관찰하기 위해 인장강도 및 열중량 분석기(TGA)를 측정하였다. HPC/TOCN 복합필름에서 TOCN의 함량이 1 wt%에서 5 wt%까지 증가할수록 인장강도와 인장탄성계수는 직선적으로 증가하는 경향을 보였다. 그러나 TGA 분석 결과, TOCN의 함량에 관계없이 HPC/TOCN 복합필름의 열 안정성은 거의 차이가 없었다.

Keywords

References

  1. Cho, M.J., Park, B.D. 2010. Current research on nanocellulose-reinforced nanocomposites. Journal of Korean Wood Science and Technology 38(6): 587-601. https://doi.org/10.5658/WOOD.2010.38.6.587
  2. Darja J., Robert V., Vanja K. 2015. Introduction of aldehyde vs. carboxylic groups to cellulose nanofibersusing laccase/TEMPO mediated oxidation. Carbohydrate Polymers 116: 74-85. https://doi.org/10.1016/j.carbpol.2014.03.014
  3. Gilberto S., Julien B., Alain D. 2010. Cellulosic Bionanocomposites: A review of preparation, properties and applications. Polymers 2: 728-765. https://doi.org/10.3390/polym2040728
  4. Hayaka F., Tsuguyuki S., Akira I. 2013. Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Carbohydrate Polymers 93(1): 172-177. https://doi.org/10.1016/j.carbpol.2012.04.069
  5. Jang, J.H., Lee S.H., Kim, N.H. 2014. Preparation of lignocellulose nanofibers from Korean white pine and its application to polyurethane nanocomposite. Journal of Korean Wood Science and Technology 42(6): 700-707. https://doi.org/10.5658/WOOD.2014.42.6.700
  6. Lee S.Y., Chun S.J., Kang I.A., Park J.Y. 2009a. Preparation of cellulose nanofibrils by high-pressure homogenizer and cellulose-based composite films. Journal of industrial and engineering chemistry 15(1): 50-55. https://doi.org/10.1016/j.jiec.2008.07.008
  7. Lee, S.Y., Mohan D.J., Kang I.A., Doh G.H., Lee S, Han S.O. 2009b. Nanocellulose reinforced PVA composite films: Effects of acid treatment and filler loading. Fibers and Polymers 10(1): 77-82.
  8. Masayuki H., Naoyuki T., Tsuguyuki S., Akira I. 2009. Oxidation of regenerated cellulose with $NaClO_2$ catalyzed by TEMPO and NaClO under acid-neutral conditions. Carbohydrate Polymers 78: 330-335. https://doi.org/10.1016/j.carbpol.2009.04.012
  9. Nathalie L., Isabelle D., Alain D., Julien B. 2012. Microfibrillated cellulose - Its barrier properties and applications in cellulosic materials: A review. Carbohydrate Polymers 90: 735-764. https://doi.org/10.1016/j.carbpol.2012.05.026
  10. Park, B.D., Um, I.C., Lee, S.Y., Dufresne, A. 2014. Preparation and characterization of cellulose nanofibril/polyvinyl alcohol composite nanofibers by electrospinning. J. Korean Wood Science and Technology 42(2): 119-129. https://doi.org/10.5658/WOOD.2014.42.2.119
  11. Reina T., Tsuguyuki S., Akira I. 2012. Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NaClO/$NaClO_2$ systems in water at pH 4.8 or 6.8. International Journal of Biological Macromolecules 51(3): 228-234. https://doi.org/10.1016/j.ijbiomac.2012.05.016
  12. Shibata I., Isogai A. 2003. Depolymerization of cellouronic acid during TEMPO-mediated oxidation. Cellulose 10(2): 151-158.
  13. Gamelas J.F.G., Pedrosa, J., Lourenco A.F.L., Mutje, P., Gonzalez, I., Chinga-Carrasco, G., Singh, G., Ferreira P. 2015. On the morphology of cellulose nanofibrils obtained by TEMPO-mediated oxidation and Mechanical treatment. Micron 72: 28-33. https://doi.org/10.1016/j.micron.2015.02.003