DOI QR코드

DOI QR Code

Transmission Performance Improvement Using Brightness Deviation for Visual-MIMO System

Visual-MIMO 시스템에서 휘도편차를 이용한 전송 성능 향상

  • Kim, Hee-jin (Kookmin University School of Electronics Engineering) ;
  • Kwon, Tae-ho (Kookmin University School of Electronics Engineering) ;
  • Park, Young-il (Kookmin University School of Electronics Engineering) ;
  • Kim, Ki-doo (Kookmin University School of Electronics Engineering)
  • Received : 2015.08.24
  • Accepted : 2015.10.20
  • Published : 2015.10.31

Abstract

Recently, research on the Visual-MIMO by applying the concept of MIMO to communication between the LED array and camera is in progress. Although we already introduced the method for bit decision by using reference LED array pattern, it has the disadvantage of measuring the ISI each time when there is a change in the distance. To overcome this, in this paper, we propose a bit decision and error correction method used by using the luminance deviation without using the reference array pattern. First, we execute the bit decision using experimentally determined threshold. Next, we execute the error checking on the ON-LED and make a correction only if it is found to be error. Correction is determined by using the value of brightness deviation corresponding to the range of 68.2% (1) around the maximum frequency of the histogram for each ON-LED. We verify the performance of the proposed method according to the variation of ISI with distance by using both numerical and experimental analysis.

최근 LED 어레이와 카메라간의 통신에 MIMO의 개념을 적용한 Visual-MIMO 시스템에 대한 다양한 연구가 진행되고 있다. 이전 연구에서 비트 판정을 위해 참조 LED 어레이 패턴을 사용한 방법을 제안하였으나, 참조 LED 어레이 패턴을 사용할 시에 거리가 변경될 때마다 참조 LED 어레이 패턴을 통해 ISI를 측정해야 하는 단점이 존재한다. 본 논문에서는 참조 어레이 패턴을 사용하지 않고 휘도편차를 사용한 비트 판정 및 오류정정 방법을 제안한다. 일차적으로 실험적으로 정해진 임계값에 의해 비트를 판정한다. 그 중 ON-LED로 판정된 LED에 대해서 오류 여부를 검사하고 정정을 시도한다. 정정 방법은 각 LED의 히스토그램의 전체데이터 중 최대빈도수를 기준으로 68.2%($1{\sigma}$)에 해당하는 범위인 휘도편차를 사용하여 판정한다. LED간 ISI 정도 및 거리의 변화에 따라 제안한 방법의 성능을 LED 어레이 패턴을 사용한 경우와 비교 분석하고 실험을 통해 검증한다.

Keywords

References

  1. A. Ashok, M. Gruteser, N. B. Mandayam, J. Silva, K. Dana, and M. Varga "Challenge: mobile optical networks through visual mimo," in Proc. 16th Annu. Int. Conf. Mob. Comput. Netw. (MobiCom'10), pp. 105-112, NY, USA, 2010.
  2. T. Nagura, T. Yamazato, M. Katayama, T. Yendo, T. Fujii, and H. Okada, "Tracking an LED array transmitter for visible light communications in the driving situation," in Proc. 2010 7th Int. Symp. Wireless Commun. Syst. (ISWCS), pp. 765-769, Sept. 2010.
  3. M. Varga, A. Ashok, M. Gruteser, and N. Mandayam, "Demo: visual MIMO based LED-camera communication: applied to automobile safety," in Proc. 9th Int. Conf. Mob. Syst. Appl. Serv. (MobiSys'11), pp. 383-384, ACM New York, NY, USA, 2011.
  4. A. Ashokz, M. Gruteserz, N. Mandayamz, and K. Dana, "Characterizing multiplexing and diversity in visual MIMO," in Proc. 45th Annu. Conf. Inf. Sci. Syst. (CISS), pp. 1-6, Mar. 2011.
  5. J. Yoo and S. Jung, "Cognitive vision communication based on LED array and image sensor," 2013 IEEE 56th Int. Midwest Symp. Cir. Syst. (MWSCAS), pp. 1228-1231, Columbus, OH, Aug. 2013.
  6. W. Yuan, K. Dana, M. Varga, A. Ashok, M. Gruteser, and N. Mandayam, "Computer vision methods for visual MIMO optical system," in Proc. IEEE Comput. Soc. Conf. Comput. Vision and Pattern Recognition Workshops (CVPRW), pp. 37-43, Colorado Springs, CO, Jun. 2011.
  7. S. Arai, et al., "Feasible study of road-tovehicle communication system using LED array and high-speed camera," in Proc. 15th World Congress on Intell. Transp. Syst. and ITS America's 2008 Annu. Meeting, 2008.
  8. J.-h. Baek, K.-b. Yun, Y. Park, and K.-d. Kim, "Performance improvement of visual-MIMO system using image brightness information," J. KICS, vol. 39A, no. 12, pp. 699-707, Dec. 2014. https://doi.org/10.7840/kics.2014.39A.12.699
  9. ATmega128, Datasheet(2011), Retrieved Nov. 19, 2014, from http://www.atmel.com/devices/atmega128.aspx