DOI QR코드

DOI QR Code

Optimum Conditions of Adaptive Equalizers Based on Zero-Error Probability

영확률에 기반한 적응 이퀄라이져의 최적조건

  • Kim, Namyong (Division of Electronic, Information and Commun. Eng., Kangwon National Univ.) ;
  • Lee, Gyoo-Yeong (Division of Electronic, Information and Commun. Eng., Kangwon National Univ.)
  • Received : 2015.08.27
  • Accepted : 2015.01.20
  • Published : 2015.10.31

Abstract

In signal processing, the zero-error probability (ZEP) criterion and related algorithm (MZEP) outperforms MSE-based algorithms and yields superior and stable convergence in impulsive noise environment. In this paper, the analysis of the relationship with MSE criterion proves that ZEP criterion has equivalent optimum solution of MSE criterion. Also this work reveals that the magnitude controlled input of MZEP algorithm plays the role in keeping the optimum solution undisturbed from impulsive noise.

신호처리에서 영확률을 성능기준으로 하는 적응 알고리듬들은 충격성 잡음 환경에서 우수한 성능과 안정된 수렴을 보인다. 이 논문에서는 MSE 성능기준과 비교분석을 통해 영확률 성능기준이 MSE와 동일한 최적해를 가진다는 것을 증명한다. 또한 이 연구를 통해, 영확률 기반 알고리듬의 크기 조정된 입력이 충격성 잡음으로부터 최적해가 방해 받지 않도록 유지해주는 역할을 하고 있음을 보인다.

Keywords

References

  1. S. Unawong, S. Miyamoto, and N. Morinaga, "A novel receiver design for DS-CDMA systems under impulsive radio noise environments," IEICE Trans. Commun., vol. E82-B, pp. 936-943, Jun. 1999.
  2. K. Blackard, T. Rappaport, and C. Bostian, "Measurements and models of radio frequency impulsive noise for indoor wireless communications," IEEE J. Sel. Areas in Commun., vol. 11, pp. 991-1001, 1993. https://doi.org/10.1109/49.233212
  3. H. Sedarat and K. Fisher, "Multicarrier communication in presence of biased-Gaussian noise sources," Signal Processing, vol. 88, pp. 1627-1635, Jul. 2008. https://doi.org/10.1016/j.sigpro.2007.11.025
  4. I. Santamaria, P. Pokharel, and J. Principe, "Generalized correlation function: Definition, properties, and application to blind equalization," IEEE Trans. Signal Processing, vol. 54, pp. 2187-2197, 2006. https://doi.org/10.1109/TSP.2006.872524
  5. N. Kim, K. Jung, and L. Yang, "Maximization of zero-error probability for adaptive channel equalization," J. Commun. Networks(JCN), vol. 12, pp. 459-465, Oct. 2010. https://doi.org/10.1109/JCN.2010.6388491
  6. N. Kim, "Decision feedback equalizer based on maximization of zero-error probability," J. KICS, vol. 36, pp. 516-521, Aug. 2011. https://doi.org/10.7840/KICS.2011.36C.8.516
  7. N. Kim, "Efficient adaptive algorithms based on zero-error probability maximization," J. KICS, vol. 39A, pp. 237-243, May 2014. https://doi.org/10.7840/kics.2014.39A.5.237
  8. S. Haykin, Adaptive Filter Theory, PrenticeHall, Upper Saddle River, 4th Ed., 2001.
  9. E. Parzen, "On the estimation of a probability density function and the mode," Ann. Math. Stat. vol. 33, p. 1065, 1962. https://doi.org/10.1214/aoms/1177704472

Cited by

  1. Input Power Normalization of Zero-Error Probability based Algorithms vol.42, pp.1, 2017, https://doi.org/10.7840/kics.2017.42.1.1