DOI QR코드

DOI QR Code

Effect of Environmental Factors on Sprout Germination, Growth, and Storage of Six Aster Species

쑥부쟁이속 6종의 새싹채소 발아, 재배 및 저장에 미치는 환경요인의 영향

  • Kim, Ji Soo (Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University) ;
  • Cho, Ju Sung (Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University) ;
  • Lee, Cheol Hee (Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University)
  • 김지수 (충북대학교 축산.원예.식품공학부 생물건강소재산업화사업단) ;
  • 조주성 (충북대학교 축산.원예.식품공학부 생물건강소재산업화사업단) ;
  • 이철희 (충북대학교 축산.원예.식품공학부 생물건강소재산업화사업단)
  • Received : 2014.08.31
  • Accepted : 2015.06.22
  • Published : 2015.10.31

Abstract

To increase the utility of seeds in plant resources, seeds of 6 Aster species(A. incisus, A. hayatae, A. koraiensis, A. scaber, A. spathulifolius, and A. yomena) were subjected to experiments to develop adequate methods for sprout production. To study optimum germination conditions, germination rates of the seeds were analyzed at different temperature (15, 20, 25, and $30^{\circ}C$) and light conditions. A longitudinal growth experiment was performed in dark conditions for 10 days. Seedlings, with optimum germination rate and longitudinal growth, were placed in the light for 0-3 days to seek the adequate greening periods. Sprouts grown under optimum environmental conditions were placed in vessels with or without ventilation, and stored under $4^{\circ}C$ and $10^{\circ}C$ to examine storage environment and period. As a result of this analysis, seeds were selected that germinated over 50% within 12 days. Longitudinal growth was promoted at $20-25^{\circ}C$, and optimum growth was obtained with 7-9 days. As greening days increased longitudinal growth was retarded, but orbital growth of radicles and cotyledons was promoted. Considering all these factors, greening treatment of 2 days showed the best results. In a storage ability experiment, the best result was achieved by storage in vessels without ventilation under $4^{\circ}C$. Ventilation prevented rotting of sprouts, but reduced moisture contents of sprouts. Most sprouts were fresh at $4^{\circ}C$ for 3-6 days. In particular, sprouts of A. hayatae and A. yomena had high keeping quality, and remained fresh over 3 days even at $10^{\circ}C$.

본 연구는 자원식물 종자의 유용성을 증대시키는 방법의 하나로 쑥부쟁이속 6종(가새쑥부쟁이, 눈개쑥부쟁이, 벌개미취, 참취, 해국, 쑥부쟁이) 새싹채소의 최적 생산방법을 개발하고자 수행되었다. 적정 발아조건 구명은 온도(15, 20, 25, $30^{\circ}C$) 및 광조건을 달리하여 종자를 파종한 다음 발아율 조사를 실시하였다. 이후 길이생장 기간은 온도(15, 20, 25, $30^{\circ}C$)를 달리하여 암조건에서 10일간 진행하였다. 적정 녹화기간을 알아보기 위하여 최적의 발아조건과 길이생장 기간 동안 재배한 유묘를 0-3일간 광조건에서 재배하였다. 저장환경 및 기간을 알아보기 위해 최적조건에서 재배한 새싹 채소를 통기구가 있는 용기와 밀폐 용기에 각각 넣은 다음 $4^{\circ}C$$10^{\circ}C$에서 저장하였다. 연구의 결과, 종자는 발아율 조사를 통해 12일 이내에 50% 이상 발아하는 것을 선발하였다. 길이생장은 $20-25^{\circ}C$에서 생육이 우수하였고 최적의 재배기간은 7-9일로 구명되었다. 녹화기간이 길어질수록 길이생장은 지체되었으나, 하배축의 부피생장 및 떡잎의 생육이 왕성해지는 경향을 보였다. 여러 가지 요인을 고려하였을 때, 2일간의 녹화처리가 가장 좋을 것으로 생각되었다. 저장성 실험은 $4^{\circ}C$에서 저장한 밀폐 용기에서 저장성이 좋았으며 부패는 환기에 의해 방지되었으나, 수분함량이 감소하였다. 모든 새싹채소는 $4^{\circ}C$에서 3-6일간 신선도를 유지하였으며, 특히 눈개쑥부쟁이와 쑥부쟁이는 높은 저장성을 가져 $10^{\circ}C$에서도 3일 이상 저장이 가능하였다.

Keywords

References

  1. Ahn, D.K. 2003. Illustrated book of Korean medical herbs. Gyohaksa Publishing Co., Seoul, Korea.
  2. Cho, J.Y., D.M. Son, J.M. Kim, and B.S. Seo. 2008. Effects of LEDs on the germination, growth and physiological activities of Amaranth sprouts. Kor. J. Hort. Sci. Technol. 26:106-112.
  3. Fankhauser, C. and J. Chory. 1997. Light control of plant development. Annu. Rev. Cell Dev. Biol. 13:203-229. https://doi.org/10.1146/annurev.cellbio.13.1.203
  4. Han, J.H., H.K. Moon, J.K. Kim, G.Y. Kim, and W.W. Kang. 2003a. Effect of physiological activity in extract of radish sprout. Kor. J. Food Preserv. 11:98. (Abstr.)
  5. Han, J.H., H.K. Moon, J.K. Kim, G.Y. Kim, and W.W. Kang. 2003b. Changes in chemical composition of radish bud (Raphanus sativus L.) during growth stage. Korean J. Food Cook. Sci. 19:596-602.
  6. Hopkins, W.G. 1999. Introduction to plant physiology. John Wiley & Sons, Inc., N.Y. USA.
  7. Jung, B.M., S.S. Lim, Y.J. Park, and S.J. Bae. 2005. Inhibitory effects on cell survival and quinone reductase induced activity of Aster yomena fractions on human cancer cells. J. Korean Soc. Food Sci. Nutr. 34:8-12. https://doi.org/10.3746/jkfn.2005.34.1.008
  8. Jung, H.J. 1999. Constituents and biological activities of Gymnaster koraiensis (Nakai) kitamura. PhD Diss. Chungnam National Univ., Korea.
  9. Kang, C.H. and D.H. Kim. 2000. Effect of prechilling and alternating temperature on seed germination of native plants. Korean J. Plant Res. 13:202-207.
  10. Kays, S.J. 1991. Postharvest physiology of perishable plant product. AVI, New York, USA.
  11. Kim, C.S. 1980. Study on the seed germination and salt tolerance of plants in reclaimed salt area. J. Plant Biol. 23:27-33.
  12. Kim, T.J. 1996. Korea resources plants. IV. Seoul National Univ. Press, Seoul, Korea.
  13. Lee, M.J., S.Y. Lim, J.K. Kim, and M.M. Oh. 2012. Heat shock treatments induce the accumulation of phytochemicals in Kale sprouts. Kor. J. Hort. Sci. Technol. 30:509-518.
  14. Lee, M.Y. 2007. Several Environmental Factors Affecting Production of Sprout Vegetables Using Sixty Three Species of Resource Plants. MS Thesis. Chungbuk National Univ., Korea.
  15. Lee, M.Y., S.L. Shin, and C.H. Lee. 2007a. Several factors affecting sprout vegetable production of Aster hayatae. Proc. Korean Soc. Crop Sci. 52:356. (Abstr.)
  16. Lee, M.Y., S.L. Shin, and C.H. Lee. 2007b. Several factors affecting sprout vegetable production of Aster incisis. Proc. Korean Soc. Crop Sci. 52:351. (Abstr.)
  17. Lee, M.Y., S.L. Shin, Y.D. Chang, and C.H. Lee. 2009a. Environment factors for germination, growing and storage of sprout vegetables of Coreopsis tinctoria nutt., Saussurea pulchella (Fisch.) Fisch. and Matricaria recutica L. Korean J. Plant Res. 22:136-144.
  18. Lee, M.Y., S.L. Shin, S.H. Park, N.R. Kim, Y.D. Chang, and C.H. Lee. 2009b. Development of optimal cultivation condition and analysis of antioxidant activities of Atctium lappa sprout vegetables. Korean J. Plant Res. 22:304-311.
  19. Lee, S.W. 1962. The study on rise and fall of vitamin c of green bean sprouts of nutritional growth on Korean cooking. J. Korean Home Econ. Assn. 3:357-367.
  20. Maneinelli, A.L., H.A. Borthwick, and S.B. Hendricks. 1966. Phytochrome action in tomato seed germination. Bot. Gaz. 127:1-5. https://doi.org/10.1086/336335
  21. Shin, S.K., J.H. Park, J.O. Jeon, T. Yun, and J.S. Yun. 2001. Effects of planting density on the growth of Aster koraiensis in the flat bare land. J. Korean Soc. People Plants Environ. 4:15-20.
  22. Song, J., S.L. Kim, J.J. Hwang, Y.K. Son, J.C. Song, and H.S. Hur. 2000. Physicochemical properties of soybean sprouts according to culture period. Korea Soybean Dig. 17:84-89.
  23. Yoon, Y.H., J.G. Lee, J.C. Jeong, H.C. Ok, and C.G. Kim. 2006. Effect of temperature and light on the antioxidative polyphenols contents in tatary buckwheat sprout. Proc. Korean Soc. Crop Sci. 51:378-379.
  24. Zhang, F., G. Chen, G. Huang, O. Orion, T. Krugman, T. Fahima, A.B. Korol, E. Nevo, and Y. Gutterman. 2005. Genetic basis of barley caryopsis dormancy and seedling desiccation tolerance at the germination stage. Theor. Appl. Genet. 110:445-453. https://doi.org/10.1007/s00122-004-1851-1

Cited by

  1. 반응표면분석법을 이용한 새싹보리 마이크로웨이브 추출공정의 최적화 vol.24, pp.7, 2017, https://doi.org/10.11002/kjfp.2017.24.7.949