DOI QR코드

DOI QR Code

Validation of Load Calculation Method for Greenhouse Heating Design and Analysis of the Influence of Infiltration Loss and Ground Heat Exchange

온실 난방부하 산정방법의 검증 및 틈새환기와 지중전열의 영향 분석

  • Shin, Hyun-Ho (Department of Agricultural and Rural Engineering, Chungnam National University) ;
  • Nam, Sang-Woon (Department of Agricultural and Rural Engineering, Chungnam National University)
  • 신현호 (충남대학교 지역환경토목학과) ;
  • 남상운 (충남대학교 지역환경토목학과)
  • Received : 2015.01.23
  • Accepted : 2015.05.22
  • Published : 2015.10.31

Abstract

To investigate a method for calculation of the heating load for environmental designs of horticultural facilities, measurements of total heating load, infiltration rate, and floor heat flux in a large-scale plastic greenhouse were analyzed comparatively with the calculation results. Effects of ground heat exchange and infiltration loss on the greenhouse heating load were examined. The ranges of the indoor and outdoor temperatures were $13.3{\pm}1.2^{\circ}C$ and $-9.4{\sim}+7.2^{\circ}C$ respectively during the experimental period. It was confirmed that the outdoor temperatures were valid in the range of the design temperatures for the greenhouse heating design in Korea. Average infiltration rate of the experimental greenhouse measured by a gas tracer method was $0.245h^{-1}$. Applying a constant ventilation heat transfer coefficient to the covering area of the greenhouse was found to have a methodological problem in the case of various sizes of greenhouses. Thus, it was considered that the method of using the volume and the infiltration rate of greenhouses was reasonable for the infiltration loss. Floor heat flux measured in the center of the greenhouse tended to increase toward negative slightly according to the differences between indoor and outdoor temperature. By contrast, floor heat flux measured at the side of the greenhouse tended to increase greatly into plus according to the temperature differences. Based on the measured results, a new calculation method for ground heat exchange was developed by adopting the concept of heat loss through the perimeter of greenhouses. The developed method coincided closely with the experimental result. Average transmission heat loss was shown to be directly proportional to the differences between indoor and outdoor temperature, but the average overall heat transfer coefficient tended to decrease. Thus, in calculating the transmission heat loss, the overall heat transfer coefficient must be selected based on design conditions. The overall heat transfer coefficient of the experimental greenhouse averaged $2.73W{\cdot}m^{-2}{\cdot}C^{-1}$, which represents a 60% heat savings rate compared with plastic greenhouses with a single covering. The total heating load included, transmission heat loss of 84.7~95.4%, infiltration loss of 4.4~9.5%, and ground heat exchange of -0.2~+6.3%. The transmission heat loss accounted for larger proportions in groups with low differences between indoor and outdoor temperature, whereas infiltration heat loss played the larger role in groups with high temperature differences. Ground heat exchange could either heighten or lessen the heating load, depending on the difference between indoor and outdoor temperature. Therefore, the selection of a reference temperature difference is important. Since infiltration loss takes on greater importance than ground heat exchange, measures for lessening the infiltration loss are required to conserve energy.

원예시설의 환경설계 중 난방부하 산정방법에 대한 검증을 위하여, 대규모 플라스틱 온실에서 총난방부하와 틈새환기율, 지중전열량을 계측하여 계산결과와 비교 분석하였고, 지중전열 및 틈새환기가 온실의 난방부하에 미치는 영향을 검토하였다. 실험기간 동안 실내기온은 $13.3{\pm}1.2^{\circ}C$, 실외 기온은 $-9.4{\sim}+7.2^{\circ}C$의 범위를 보였으며, 우리나라의 난방 설계 외기온 범위에서 유효한 것으로 확인하였다. 가스트레이서법으로 측정한 틈새환기율은 평균 $0.245h^{-1}$로 나타났다. 온실의 피복면적에 일정한 환기전열계수값을 사용하는 방법은 온실의 규모에 따라서 문제가 있는 것으로 분석되었다. 따라서 환기전열부하는 온실의 체적과 틈새환기율을 이용하는 방법이 합리적인 것으로 판단된다. 온실 중앙에서 측정한 지중열류는 실내외 기온차에 따라 음으로 약간 증가하는 경향을 보이고, 온실 측면에서 측정한 지중열류는 실내외 기온차에 따라 양으로 크게 증가하는 경향을 보였다. 계측 결과를 바탕으로 온실의 외주부를 통한 열손실 개념을 도입한 새로운 지중전열부하 산정 방법을 개발하였으며, 검증결과 잘 일치하는 것으로 나타났다. 관류열부하는 대체로 실내외 기온차에 비례하는 것으로 나타났으나, 열관류율은 작아지는 경향을 보였다. 따라서 관류열부하 산정시 설계조건에 따라 열관류율의 선택에 주의를 기울여야 할 것으로 판단된다. 실험온실의 열관류율은 평균 $2.73W{\cdot}m^{-2}{\cdot}C^{-1}$로 단일피복의 플라스틱 온실 대비 60%의 열절감율을 보이는 것으로 나타났다. 전체 난방부하 중에서 관류열부하가 84.7~95.4%, 환기전열부하가 4.4~9.5%, 지중전열부하가 -0.2~+6.3%를 차지하는 것으로 나타났다. 관류열부하는 실내외 기온차가 낮은 그룹에서 더 큰 비율을 차지하고, 환기전열 부하는 실내외 기온차가 높은 그룹에서 더 큰 비율을 차지하는 것으로 나타났다. 지중전열부하의 경우 실내외 기온차가 낮은 그룹에서는 부하를 경감시키는 방향으로 작용하고, 실내외 기온차에 따라 부하를 증가시키거나 경감시키는 방향으로 작용하는 것으로 나타났으므로 이 기준 온도차의 선택이 중요한 것으로 판단된다. 지중전열부하에 비하여는 환기전열부하가 더 큰 비중을 차지하므로 에너지 절감을 위해서는 틈새환기율을 줄일 수 있는 대책이 필요한 것으로 판단된다.

Keywords

References

  1. Albright, L.D. 1990. Environment control for animals and plants. American Society of Agricultural Engineers, Michigan, USA.
  2. American Society of Agricultural and Biological Engineers (ASABE). 2008. Standard: Heating, ventilating and cooling greenhouses. ANSI/ASAE EP406.4. ASABE, Michigan, USA.
  3. Baptista, F.J., B.J. Bailey, J.M. Randall, and J.F. Meneses. 1999. Greenhouse ventilation rate: Theory and measurement with tracer gas techniques. J. Agric. Eng. Res. 72:363-374. https://doi.org/10.1006/jaer.1998.0381
  4. Diop, S., J.W. Lee, and H.W. Lee. 2014. Measurement and comparison of overall heat transfer coefficients for greenhouse covering materials with thermal screens. J. Korean Soc. Agric. Eng. 56(4):41-51. https://doi.org/10.5389/KSAE.2014.56.4.041
  5. Ham, J.S. 1993. An evaluation on the accuracy of tracer-gas method in ventilation rate measurement. J. Archit. Inst. Korea. 9(12):71-79.
  6. Hwang, Y.Y., J.W. Lee, and H.W. Lee. 2013. Estimation of overall heat transfer coefficient for single layer covering in greenhouse. Protected Hortic. Plant Fac. 22:108-115. https://doi.org/10.12791/KSBEC.2013.22.2.108
  7. Japan Greenhouse Horticulture Association (JGHA). 2007. Handbook of protected horticulture 5 th edition. JGHA, Tokyo, Japan.
  8. Kim, M.K., S.G. Lee, W.M. Seo, and J.E. Son. 1997. Design standards for greenhouse environment. Rural Development Corporation, Ansan, Korea.
  9. Kozai, T., T. Gunji, and I. Watanabe. 1982. Measurements and analyses of the daily heating load of a greenhouse. J. Agric. Meteorol. 38:279-285. https://doi.org/10.2480/agrmet.38.279
  10. Lee, H.W., S. Diop, and Y.S. Kim. 2011. Variation of the overall heat transfer coefficient of plastic greenhouse covering material. J. Bio-Environ. Control 20:72-77.
  11. Mihara, Y., Y. Naitou, and T. Takakura. 1978. Investigations on the heating load of a large plastic greenhouse. J. Agric. Meteorol. 33:189-193. https://doi.org/10.2480/agrmet.33.189
  12. Ministry of Agriculture, Food and Rural Affairs (MAFRA). 2014. Current status of greenhouses and products for vegetables in 2013. MAFRA, Sejong, Korea.
  13. Nam, S.W. 2013. Current status of greenhouse environmental design technique and comparison of standard weather data. J. Korean Soc. Agric. Eng. 55(4):28-36.
  14. Nam, S.W., H.H. Shin, and D.U. Seo. 2014. Comparative analysis of weather data for heating and cooling load calculation in greenhouse environmental design. Protected Hortic. Plant Fac. 23:174-180. https://doi.org/10.12791/KSBEC.2014.23.3.174
  15. Nederhoff, E.M., J. Van De Vooren, and A.J. Udink Ten Cate. 1985. A practical tracer gas method to determine ventilation in greenhouses. J. Agric. Eng. Res. 31:309-319. https://doi.org/10.1016/0021-8634(85)90107-6
  16. Nijskens, J., J. Deltour, S. Coutisse, and A. Nisen. 1984. Heat transfer through covering materials of greenhouses. Agric. For. Meteorol. 33:193-214. https://doi.org/10.1016/0168-1923(84)90070-4
  17. Ogura, Y. 1982. Some results of actual observations of net radiation and soil heat transfer in unheated greenhouses. J. Agric. Meteorol. 37(4):303-308. https://doi.org/10.2480/agrmet.37.303
  18. Okada, M. 1980. Fundamentals and practices of greenhouse design: Ch.15 Heating. Yokendo Co. Ltd. Tokyo, Japan.
  19. Society of Air-Conditioning and Refrigerating Engineers of Korea (SAREK). 2011. Handbook of facilities engineering. Vol. 2 Air-conditioning. SAREK, Seoul, Korea.
  20. Spitler, J.D. 2010. Load calculation applications manual. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. Atlanta, USA.
  21. Takakura, T. 1993. Climate under cover: Digital dynamic simulation in plant bio-engineering. Kluwer Academic Publishers, Dordrecht, The Netherlands.
  22. Watanabe, I. 1986. Experimental methods for agricultural environment. Science House, Tokyo, Japan.

Cited by

  1. Analysis of Outdoor Design Temperatures for Heating and Cooling Greenhouses Based on Annual Percentiles vol.27, pp.3, 2018, https://doi.org/10.12791/KSBEC.2018.27.3.269
  2. Thermal-Load Analysis of Semi-Basement-Type Single-Span Greenhouse vol.44, pp.3, 2019, https://doi.org/10.1007/s42853-019-00007-z
  3. Analysis of aerodynamic problems of domestic greenhouses and development of educational VR (virtual reality) simulator vol.1279, pp.None, 2015, https://doi.org/10.17660/actahortic.2020.1279.42