DOI QR코드

DOI QR Code

Preparation of Superhydrophobic Surfaces Using Agglomeration Control of Silica Nanoparticles by Organic Solvent and Non-fluoride Self-assembled Monolayers

유기용매에 의한 실리카 나노입자의 응집조절과 비불소계 자기조립박막을 이용한 초발수 표면 제조

  • Kim, Taeyoon (Department of Polymer Science and Engineering, Pusan National University) ;
  • Jeong, Jin (Department of Polymer Science and Engineering, Pusan National University) ;
  • Chung, Ildoo (Department of Polymer Science and Engineering, Pusan National University)
  • 김태윤 (부산대학교 고분자공학과) ;
  • 정진 (부산대학교 고분자공학과) ;
  • 정일두 (부산대학교 고분자공학과)
  • Received : 2015.08.02
  • Accepted : 2015.09.10
  • Published : 2015.09.30

Abstract

In this study, octadecyltrichlorosilane (OTS) has been used to replace fluoro-silanes which are much more expensive than OTS. In order to improve the mechanical and adhesive properties of coating layers, inorganic binders were separately synthesized based on sol-gel reaction in acidic condition. Since the synthesized silica nanoparticles gave only nano-scaled roughness, superhydrophobicity is not well obtained. Here, we present a new simple approach by intentionally inducing particle aggregation in the solution which is controlled by adjusting solvent amount. With selecting suitable sizes of silica nanoparticles, superhydrophobic surfaces were obtained with increasing the amount of organic solvents after surface hydrophobization using OTS, and an extremely water-repellent behavior was observed with zero sliding angle. This superhydrophobicity was achived only for the dielectric constant lower than 25, regardless of the composition of solvent, meaning that the dielectric constant could be an excellent indicator for fabricating superhydrobic surfaces induced by particle aggregation in the solution.

본 연구에서는 발수성 재료로 쓰이고 상대적으로 가격이 비싼 불소계 실란을 대체하기 위해 octadecyltrichlorosilane (OTS)을 사용하였다. 코팅층의 기계적 접착강도를 향상시키기 위해 무기바인더를 산 촉매 하에서 졸-겔 반응에 의해 분산시켜 합성하였다. 합성된 실리카 나노입자는 나노크기의 거칠기를 제공하기 때문에 초소수성을 쉽게 얻기 어려우므로 유기용매에 의한 입자의 응집을 유도하였다. 실리카 나노입자의 적절한 크기 선택에 따라 OTS를 사용해서 표면을 소수화 시킨 후 유기용매의 양이 증가함에 따라 초소수성의 표면을 얻었고 극도의 물 반발 거동이 zero sliding angle과 함께 관찰되었다. 이러한 초소수성은 용매와의 혼합과 상관없이 유전상수가 25보다 작은 값을 가졌으며 용매 내에서 입자의 응집을 통해 유도된 초소수성 표면을 제조하는 것이 저유전상수 값에 대한 지표가 되었다.

Keywords

References

  1. K. D. Han, C. P. Leo, and S. P. Chai, Applied Surface Science, 258 (2012).
  2. H. Wang, L. Tang, X. Wu, W. Dai, and Y. Qiu, Applied Surface Science, 253, 8818 (2007). https://doi.org/10.1016/j.apsusc.2007.04.006
  3. A. V. Rao, S. S. Latthe, D. Y. Nadargi, H. Hrashima, and V. Ganesan, Journal of Colloid and Interface Science, 332, 484 (2009). https://doi.org/10.1016/j.jcis.2009.01.012
  4. Y. K. Kang, E. M. Kwak, and I. Chung, Journal of Adhesion and Interface, 15, 151 (2014). https://doi.org/10.17702/jai.2014.15.4.151
  5. H. S. Lim, KIC News, 5, 11 (2012).
  6. C. Neinhuis and W. Barthlott, Journal of Adhesion and Interface, 4, 9 (2003).
  7. Y. W Jung, J. W. Park, I. Kim, and C. S. Ha, Journal of Adhesion and Interface, 6, 1 (2005).
  8. H. M. Shang, Y. W, S. J. Limmer, T. P. Chou, K. Takahashi, and G. Z. Cao, Thin Solid Films, 472, 37 (2007).
  9. W. Barthlott and C. Neinhuis, Planta, 202, 1 (1997). https://doi.org/10.1007/s004250050096
  10. X. F. Gao and L. Jiang, Nature, 432, 36 (2004). https://doi.org/10.1038/432036a
  11. T. Wagner, C. Neinhuis, and W. Barthlott, Acta Zool., 77, 213 (1996). https://doi.org/10.1111/j.1463-6395.1996.tb01265.x
  12. W. Lee, M. K. Jin, W. C. Yoo, and J. K. Lee, Langmuir, 20, 7665 (2004). https://doi.org/10.1021/la049411+
  13. R. N. Wenzel, Ind. Eng. Chem., 28, 988 (1936). https://doi.org/10.1021/ie50320a024
  14. A. B. D. Cassie and S. Baxter, Trans. Faraday Soc., 40, 546 (1944). https://doi.org/10.1039/tf9444000546
  15. A. R. Parker and C. R. Lawrence, Nature, 414, 33 (2001). https://doi.org/10.1038/35102108
  16. R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, and T. Watanabe, Adv. Mater., 10, 135 (1998). https://doi.org/10.1002/(SICI)1521-4095(199801)10:2<135::AID-ADMA135>3.0.CO;2-M
  17. C. Qian, C. Guanghua, F. Yan, and R. Luquan, J. Bion. Eng., 1, 249 (2004).
  18. C. Neinhuis and W. Barthlott, Ann. Bot., 79, 667 (1997). https://doi.org/10.1006/anbo.1997.0400

Cited by

  1. 졸-겔법에 의해 Tetraethoxysilane과 Methyltrimethoxysilane으로부터 발수코팅제 제조 vol.56, pp.3, 2015, https://doi.org/10.9713/kcer.2018.56.3.327
  2. Methyltrimethoxysilane과 Trimethylethoxysilane을 이용한 비불소계 발수 코팅 도막의 제조 vol.57, pp.2, 2015, https://doi.org/10.9713/kcer.2019.57.2.177
  3. 실란/실록산계 에멀전 발수제를 혼입한 시멘트 페이스트의 발수특성 vol.21, pp.1, 2015, https://doi.org/10.5345/jkibc.2021.21.1.031