DOI QR코드

DOI QR Code

Preparation and Characterization of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Graphene Nanocomposites

3-히드록시부티레이트-3-히드록시발러레이트 공중합체/그래핀 나노복합체의 제조 및 물성

  • You, Eun Jung (Department of Polymer Science and Engineering, Pusan National University) ;
  • Lee, Dan Bi (Department of Polymer Science and Engineering, Pusan National University) ;
  • Ha, Chang-Sik (Department of Polymer Science and Engineering, Pusan National University)
  • 유은정 (부산대학교 고분자공학과) ;
  • 이단비 (부산대학교 고분자공학과) ;
  • 하창식 (부산대학교 고분자공학과)
  • Received : 2015.07.22
  • Accepted : 2015.09.02
  • Published : 2015.09.30

Abstract

In the present work, we investigated poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/graphene nanocomposites. The electrical, hydrophobic properties and thermal properties of the nanocomposite films having different graphene contents were investigated. The scanning electron microscopy (SEM) morphology showed good dispersion of graphene layers in the PHBV matrix. Based on the X-ray diffraction and differential scanning calorimetry, the addition of graphene increased the crystallinity of PHBV. Thermal stability, hydrophobicity, and electrical conductivity of the nanocomposites were increased with increasing the graphene contents.

본 연구는 poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/그래핀 복합체의 제조 및 특성에 관한 연구이다. 투입하는 그래핀의 함량에 따른 복합체의 전기적 물성, 소수성, 및 열적 성질에 미치는 영향에 대해 연구하였다. 표면주사전자현미경 연구결과 PHBV 고분자 matrix에 판상의 그래핀이 고르게 잘 분산되었음을 확인하였다. X-선 회절 연구와 시차열량주사계 분석을 통하여 그래핀을 첨가할수록 PHBV의 결정도를 증가시켰고, 투입하는 그래핀의 함량이 증가할수록 복합체의 열적 안정성, 소수성 및 전기전도도 등이 증가하는 것으로 나타났다.

Keywords

References

  1. R. Shogren, J. Environ. Polym. Degr., 5, 91 (1997). https://doi.org/10.1007/BF02763592
  2. D. Cava, A. Lopez-Rubio, L. Cabedo, E. Gimenez, J. L. Feijoo, R. Gavara, and J. M. Lagaron, In: Proceedings of the 63rd Annual Technical Conference & Exhibition Society of Plastics Engineers; Brookfield, CT. (2005).
  3. D. Cava, E. Gimenez, R. Gavara, and J. M. Lagaron, J. Plast. Film Sheet, 22, 265 (2006). https://doi.org/10.1177/8756087906071354
  4. S. Wang, C. Song, G. Chen, T. Guo, J. Liu, B. Zhang, and S. Takeuchi, Polym. Deg. Stab., 87, 69 (2005). https://doi.org/10.1016/j.polymdegradstab.2004.07.008
  5. A. K. Geim, Science, 324, 1530 (2009). https://doi.org/10.1126/science.1158877
  6. W. Choi, I. Lahiri, R. Seelaboyina, and Y. S. Kang, Crit. Rev. Solid State, 35, 52 (2010). https://doi.org/10.1080/10408430903505036
  7. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, 666 (2004). https://doi.org/10.1126/science.1102896
  8. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Nature, 442, 282 (2006). https://doi.org/10.1038/nature04969
  9. J. Lee, J. Hong, and S. E. Shim, Macromol. Res., 17, 931 (2009). https://doi.org/10.1007/BF03218638
  10. B. Wang, Y. Zhang, J. Zhang, Q. Gou, Z. Wang, P. Chen, and Q. Gu, Chinese J. Polym. Sci., 31, 4, 670 (2013). https://doi.org/10.1007/s10118-013-1248-1
  11. X. Jing and Z. Qui, J. Nanosci. Nanotechnol., 12, 7314 (2012). https://doi.org/10.1166/jnn.2012.6461
  12. V. Sridhar, I. Lee, H. H. Chun, and H. Park, eXPRESS Polym. Lett., 7(4), 320 (2013). https://doi.org/10.3144/expresspolymlett.2013.29
  13. W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958). https://doi.org/10.1021/ja01539a017
  14. O. Akhavan, Carbon, 48, 509 (2010). https://doi.org/10.1016/j.carbon.2009.09.069
  15. H. X. Xiang, S. H. Chen, Y. H. Cheng, Z. Zhou, and M. F. Zhu, eXPRESS Polym. Lett., 7, 778 (2013). https://doi.org/10.3144/expresspolymlett.2013.75
  16. P. G. Ren, D. X. Yan, X. Ji, T. Chen. and Z. M. Li, Nanotechnology, 22, 055705 (2011). https://doi.org/10.1088/0957-4484/22/5/055705
  17. K. L. Dagnon, H. H. Chen, L. H. Innocentini-Mei, and N. A. D'Souza, Polym. Comp., 58, 133 (2009).
  18. J. Sandler, A. H. Windle, P. Werner, V. Altstadt, M. V. Es, and M. S. P. Shaffer, J. Mater. Sci., 38, 2135 (2003). https://doi.org/10.1023/A:1023715811817
  19. M. Lai, J. Li, J. Yang, J. Liu, X. Tong, and H. Cheng, Polym. Int., 53, 1479 (2004). https://doi.org/10.1002/pi.1566
  20. H. W. Ha, A. Choudhury, T. Kamal, T. H. Kim, and S. Y. Park, ACS Appl. Mater. Interf., 4, 4623 (2012). https://doi.org/10.1021/am300999g
  21. S. Mikhailov, Physics and Applications of Graphene-Experiments, InTech Janeza Trdine Rijeka, Croatia (2011).

Cited by

  1. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Graphene Oxide Nanocomposite Films: Thermomechanical Properties, Oxygen Transmission Rates, and Hydrolytic Degradation vol.26, pp.1, 2017, https://doi.org/10.5322/jesi.2017.26.1.1