DOI QR코드

DOI QR Code

Influence of Textural Structure by Heat-treatment on Electrochemical Properties of Pitch-based Activated Carbon Fiber

열처리 온도에 의한 피치계 활성탄소섬유의 기공구조 변화가 전기화학적 특성에 미치는 영향

  • Kim, Kyung Hoon (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Park, Mi-Seon (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Jung, Min-Jung (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Lee, Young-Seak (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
  • 김경훈 (충남대학교 정밀응용화학과) ;
  • 박미선 (충남대학교 정밀응용화학과) ;
  • 정민정 (충남대학교 정밀응용화학과) ;
  • 이영석 (충남대학교 정밀응용화학과)
  • Received : 2015.08.05
  • Accepted : 2015.09.14
  • Published : 2015.10.10

Abstract

In this study, electrochemical properties of pitch-based activated carbon fibers (ACFs) were investigated by different heat-treatment temperature of the pitch-based ACFs in order to improve the specific capacitance of electric double-layer capacitor (EDLC). The ACFs were prepared by different heat-treatment temperatures of 1050 and $1450^{\circ}C$, after activation with 4 M KOH at $800^{\circ}C$ using stabilized pitch fiber. The specific surface area of prepared ACFs increased from $828m^2/g$ to $987m^2/g$, also the micropore and mesopore volumes of prepared ACFs were increased. These results because pore was produced by desorbing oxygen and hydrogen elements within the ACFs, and pore size was increased by contraction ACFs by heat-treatment process. Because of the porous properties, the specific capacitance was increased from 73 F/g to 119 F/g using cyclic voltammetry with 1 M $H_2SO_4$ at scan rates of 5 mV/s.

본 연구에서는 전기이중층 커패시터의 비정전용량 향상시키기 위하여 활성탄소섬유의 열처리 온도가 전기화학적 특성에 미치는 영향을 알아보았다. 용융방사한 피치 섬유를 안정화를 거쳐 $800^{\circ}C$에서 4 M KOH로 활성화하였고, 활성화 섬유를 각각 1050, $1450^{\circ}C$의 온도조건에서 열처리하여 서로 다른 특성을 갖는 활성탄소섬유를 제조하였다. 제조된 활성탄소섬유는 열처리 온도가 증가함에 따라 비표면적이 $828m^2/g$에서 $987m^2/g$으로 증가하였으며 미세공 및 중간세공의 부피 또한 증가하였다. 이는 열처리 공정이 활성탄소섬유 내부의 산소 및 수소 원소 성분을 탈리시키면서 세공이 생성되고, 활 성탄소섬유를 수축하게 하여 상대적으로 세공의 크기를 증가시켰기 때문이다. 이러한 세공 변화로 인하여 제조된 전극은 1 M 황산수용액을 전해질로 하여 5 mV/s의 전위주사속도로 측정하였을 때, 비정전용량이 73 F/g에서 119 F/g으로 향상되었음을 확인하였다.

Keywords

References

  1. E. Frackowiak and F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors, Carbon, 39, 937-950 (2001). https://doi.org/10.1016/S0008-6223(00)00183-4
  2. X. H. Xia, L. Shi, H. B. Liu, L, Yang, and Y. D. He, A facile production of microporous carbon spheres and their electrochemical performance in EDLC, Phys. Chem. Solids, 73, 385-390 (2012). https://doi.org/10.1016/j.jpcs.2011.10.028
  3. C. Largeot, C. Porter, J. Chemiola, P. L. Taberna, Y. Gogotsi, and P. Simon, Relation between the ion size and pore size for an electric double layer capacitor, J. Am. Chem. Soc., 13, 2730-2731 (2008).
  4. M. Kodama, J. Yamashita, Y. Soneda, H. Hatori, S. Nishimura, and K. Kamegawa, Structural characterization and electric double layer capacitance of template carbons, Mater. Sci. Eng., B, 108, 156-161 (2004). https://doi.org/10.1016/j.mseb.2003.10.097
  5. E. Frackowiak, Carbon materials for supercapacitor application, Phys. Chem. Chem. Phys., 9, 1774-1785 (2007). https://doi.org/10.1039/b618139m
  6. A. Tanimura, A. Kovalenko, and F. Hirata, Molecular theory of an electrochemical double layer in a nanoporous carbon supercapacitor, Phys. Lett., 378, 638-646 (2003).
  7. H. Wolfgang and K. Erhard, On the suitability of agricultural by-products for the manufacture of granular activated carbon, Fuel, 74, 1789-1791 (1995).
  8. R. K. Nasrin, M. Campbell, G. Sandi, and J. Golas, Production of micro- and mesoporous activated carbon from paper mill sludge I. effect of zinc chloride activation, Carbon, 38, 1905-1915 (2000). https://doi.org/10.1016/S0008-6223(00)00043-9
  9. S. W. Won, G. Wu, H. Ma, Q. Liu, Y. Yan, L. Cui, C. Liu, and Y. S. Yun, Adsorption performance and mechanism in binding of reactive red 4 by coke waste, J. Hazard. Mater., 138, 370-377 (2006). https://doi.org/10.1016/j.jhazmat.2006.05.060
  10. S. G. Lee, K. H. Park, W. G. Shim, M. S. Balathanigaimani, and H. Moon, Performance of electrochemical double layer capacitors using highly porous activated carbons prepared from beer lees, J. Ind. Eng. Chem., 17, 450-454 (2011). https://doi.org/10.1016/j.jiec.2010.10.025
  11. T. Adinaveen, L. J. Kennedy, J. J. Vijaya, and G. Sekaran, Studies on structural, morphological, electrical and electrochemical properties of activated carbon prepared from sugarscane gagasse, J. Ind. Eng. Chem., 19, 1470-1476 (2013). https://doi.org/10.1016/j.jiec.2013.01.010
  12. N. Diaz, P. Alvarez, R. Santamaria, C. Blanco, R. Menendez, and M. Granda, Optimisation of the melt-spinning of anthracene oil-based pitch for isotropic carbon fibre preparation, Fuel process. Technol., 93, 99-104 (2012). https://doi.org/10.1016/j.fuproc.2011.09.016
  13. M. I. Kim and Y. S. Lee, Preparation of gas sensor from pitch-based activated carbon fibersand its toxic gas sensing characteristics, Appl. Chem. Eng., 25, 193-197 (2014). https://doi.org/10.14478/ace.2014.1006
  14. T. Morimoto, K. Hiratsuka, Y. sanada, and K. Kurihara, Electric double-layer capacitor using organic electrolyte, J. Power sources, 60, 239-247 (1996). https://doi.org/10.1016/S0378-7753(96)80017-6
  15. J. G. Kim, S. C. Kang, E. Shin, D. Y. Kim, J. H. Lee, and Y. S. Lee, $CO_2$ sensing characteristics of carbon-nanofibers based on effects of porosity and amine functional group, Appl. Chem. Eng., 23, 47-52 (2012).
  16. M. J. Jung, E. Jeong, Y. Kim, and Y. S. Lee, Influence of the textural properties of activated carbon nanofibers on the performance of electric double-layer capacitors, J. Ind. Eng. Chem., 19, 1315-1319 (2013). https://doi.org/10.1016/j.jiec.2012.12.034
  17. S. Shin, J. Jang, S. H. Yoon, and I. Mochida, A study on the effect of heat treatment on functional groups of pitch based activated carbon fiber using FTIR, Carbon, 35, 1739-1743 (1997). https://doi.org/10.1016/S0008-6223(97)00132-2
  18. T. W. Little and F. S. Ohuchi, Chemical interaction of $NF_3$ ion beams and plasmas with Si (Part I): X-ray photoelectron spectroscopy studies, Surf. Sci., 445, 235-242 (2000). https://doi.org/10.1016/S0039-6028(99)01061-4
  19. C. Zhang, Y. Duan, B. Xing, L. Zhan, W. Qiao, and L. Ling, Influence of nitrogen hetero-substitution on the electrochemical performance of coal-based activated carbons measured in non-aqueous electrolyte, Mining Sci. Technol., 19, 295-299 (2009).
  20. E. Jeong, M. J. Jung, S. H. Cho, S. I. Lee, and Y. S. Lee, Surface and electrochemical properties of amino-fluorinated activated carbon, Colloids Surf. A., 377, 243-250 (2011). https://doi.org/10.1016/j.colsurfa.2010.12.035
  21. S. Atul, K. Takashi, and T. Akira, Comparison of structural parameters of PF carbon from XRD and HRTEM techniques, Carbon, 38, 1977-1984 (2000). https://doi.org/10.1016/S0008-6223(00)00045-2
  22. Y. Huang, E. Ma, and G. Zhao, Thermal and structure analysis on reaction mechanisms during the preparation of activated carbon fibers by KOH activation from liquefied wood-based fibers, Ind. Crops Prod., 69, 447-455 (2015). https://doi.org/10.1016/j.indcrop.2015.03.002
  23. M. S. Park, S. Cho, E. Jeong, and Y. S. Lee, Physico-chemical and electrochemical properties of pitch-based high crystallinity cokes used as electrode material for electric double layer capacitor, J. Ind. Eng. Chem., 23, 27-32 (2015). https://doi.org/10.1016/j.jiec.2014.07.038
  24. J. H. Kim, D. Lee, T. S. Bae, and Y. S. Lee, The electrochemical enzymatic glucose biosensor based on mesoporous carbon fibers activated by potassium carbonate, J. Ind. Eng. Chem., 25, 192-198 (2015). https://doi.org/10.1016/j.jiec.2014.10.034
  25. J. B. Condon, Surface Area and Porosity Determinations by Phsisorption: Measurements and theory. 1st ed., 11-18, Elsevier science, Oxford, UK (2006).
  26. J. G. Kim, C. H. Chung, and Y. S. Lee, The effect of crystallization by heat treatment on electromagnetic interference shielding efficiency of carbon fibers, Appl. Chem. Eng., 22, 138-143 (2011).
  27. E. R. Thomas, D. Hulicova-Jurcakova, Z. Zhu, and G. Q. Lu, Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors, Electrochem. Commun., 10, 1594-1597 (2008). https://doi.org/10.1016/j.elecom.2008.08.022
  28. K. L. Yang, S. Yiacoumi, and C. Tsouris, Electrosorption capacitance of nanostructured carbon aerogel obtained by cyclic voltammetry, J. Electroanal. Chem., 540, 159-167 (2003). https://doi.org/10.1016/S0022-0728(02)01308-6
  29. D. Lee, J. Y. Jung, M. S. Park, and Y. S. Lee, Preparation of novolac-type phenol-based activated carbon with a hierarchical pore structure and its electric double-layer capacitor performance, Carbon lett., 15, 192-197 (2014). https://doi.org/10.5714/CL.2014.15.3.192
  30. V. Gupta and N. Miura, Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors, Electrochim. Acta., 52, 1721-1726 (2006). https://doi.org/10.1016/j.electacta.2006.01.074
  31. M. Ramani, B. S. Haran, R. E. White, and B. N. Popov, Synthesis and characterization of hydrous ruthenium oxide-carbon supercapacitors, J. Electrochem. Soc., 148, A374-A380 (2001). https://doi.org/10.1149/1.1357172

Cited by

  1. Effect of E-beam Radiation with Acid Drenching on Surface Properties of Pitch-based Carbon Fibers vol.27, pp.3, 2016, https://doi.org/10.14478/ace.2016.1042
  2. 리튬이온전지용 화학적 활성화로 제조된 석유계 피치 음극소재의 전기화학적 특성 vol.55, pp.3, 2017, https://doi.org/10.9713/kcer.2017.55.3.307
  3. 열처리 온도에 따른 열분해 연료유 내 휘발유분 및 잔류 중질유분의 구조 분석 vol.30, pp.3, 2015, https://doi.org/10.14478/ace.2019.1010
  4. Surface functionalization methodologies on activated carbons and their benzene adsorption vol.31, pp.3, 2021, https://doi.org/10.1007/s42823-020-00170-w