References
- E. Frackowiak and F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors, Carbon, 39, 937-950 (2001). https://doi.org/10.1016/S0008-6223(00)00183-4
- X. H. Xia, L. Shi, H. B. Liu, L, Yang, and Y. D. He, A facile production of microporous carbon spheres and their electrochemical performance in EDLC, Phys. Chem. Solids, 73, 385-390 (2012). https://doi.org/10.1016/j.jpcs.2011.10.028
- C. Largeot, C. Porter, J. Chemiola, P. L. Taberna, Y. Gogotsi, and P. Simon, Relation between the ion size and pore size for an electric double layer capacitor, J. Am. Chem. Soc., 13, 2730-2731 (2008).
- M. Kodama, J. Yamashita, Y. Soneda, H. Hatori, S. Nishimura, and K. Kamegawa, Structural characterization and electric double layer capacitance of template carbons, Mater. Sci. Eng., B, 108, 156-161 (2004). https://doi.org/10.1016/j.mseb.2003.10.097
- E. Frackowiak, Carbon materials for supercapacitor application, Phys. Chem. Chem. Phys., 9, 1774-1785 (2007). https://doi.org/10.1039/b618139m
- A. Tanimura, A. Kovalenko, and F. Hirata, Molecular theory of an electrochemical double layer in a nanoporous carbon supercapacitor, Phys. Lett., 378, 638-646 (2003).
- H. Wolfgang and K. Erhard, On the suitability of agricultural by-products for the manufacture of granular activated carbon, Fuel, 74, 1789-1791 (1995).
- R. K. Nasrin, M. Campbell, G. Sandi, and J. Golas, Production of micro- and mesoporous activated carbon from paper mill sludge I. effect of zinc chloride activation, Carbon, 38, 1905-1915 (2000). https://doi.org/10.1016/S0008-6223(00)00043-9
- S. W. Won, G. Wu, H. Ma, Q. Liu, Y. Yan, L. Cui, C. Liu, and Y. S. Yun, Adsorption performance and mechanism in binding of reactive red 4 by coke waste, J. Hazard. Mater., 138, 370-377 (2006). https://doi.org/10.1016/j.jhazmat.2006.05.060
- S. G. Lee, K. H. Park, W. G. Shim, M. S. Balathanigaimani, and H. Moon, Performance of electrochemical double layer capacitors using highly porous activated carbons prepared from beer lees, J. Ind. Eng. Chem., 17, 450-454 (2011). https://doi.org/10.1016/j.jiec.2010.10.025
- T. Adinaveen, L. J. Kennedy, J. J. Vijaya, and G. Sekaran, Studies on structural, morphological, electrical and electrochemical properties of activated carbon prepared from sugarscane gagasse, J. Ind. Eng. Chem., 19, 1470-1476 (2013). https://doi.org/10.1016/j.jiec.2013.01.010
- N. Diaz, P. Alvarez, R. Santamaria, C. Blanco, R. Menendez, and M. Granda, Optimisation of the melt-spinning of anthracene oil-based pitch for isotropic carbon fibre preparation, Fuel process. Technol., 93, 99-104 (2012). https://doi.org/10.1016/j.fuproc.2011.09.016
- M. I. Kim and Y. S. Lee, Preparation of gas sensor from pitch-based activated carbon fibersand its toxic gas sensing characteristics, Appl. Chem. Eng., 25, 193-197 (2014). https://doi.org/10.14478/ace.2014.1006
- T. Morimoto, K. Hiratsuka, Y. sanada, and K. Kurihara, Electric double-layer capacitor using organic electrolyte, J. Power sources, 60, 239-247 (1996). https://doi.org/10.1016/S0378-7753(96)80017-6
-
J. G. Kim, S. C. Kang, E. Shin, D. Y. Kim, J. H. Lee, and Y. S. Lee,
$CO_2$ sensing characteristics of carbon-nanofibers based on effects of porosity and amine functional group, Appl. Chem. Eng., 23, 47-52 (2012). - M. J. Jung, E. Jeong, Y. Kim, and Y. S. Lee, Influence of the textural properties of activated carbon nanofibers on the performance of electric double-layer capacitors, J. Ind. Eng. Chem., 19, 1315-1319 (2013). https://doi.org/10.1016/j.jiec.2012.12.034
- S. Shin, J. Jang, S. H. Yoon, and I. Mochida, A study on the effect of heat treatment on functional groups of pitch based activated carbon fiber using FTIR, Carbon, 35, 1739-1743 (1997). https://doi.org/10.1016/S0008-6223(97)00132-2
-
T. W. Little and F. S. Ohuchi, Chemical interaction of
$NF_3$ ion beams and plasmas with Si (Part I): X-ray photoelectron spectroscopy studies, Surf. Sci., 445, 235-242 (2000). https://doi.org/10.1016/S0039-6028(99)01061-4 - C. Zhang, Y. Duan, B. Xing, L. Zhan, W. Qiao, and L. Ling, Influence of nitrogen hetero-substitution on the electrochemical performance of coal-based activated carbons measured in non-aqueous electrolyte, Mining Sci. Technol., 19, 295-299 (2009).
- E. Jeong, M. J. Jung, S. H. Cho, S. I. Lee, and Y. S. Lee, Surface and electrochemical properties of amino-fluorinated activated carbon, Colloids Surf. A., 377, 243-250 (2011). https://doi.org/10.1016/j.colsurfa.2010.12.035
- S. Atul, K. Takashi, and T. Akira, Comparison of structural parameters of PF carbon from XRD and HRTEM techniques, Carbon, 38, 1977-1984 (2000). https://doi.org/10.1016/S0008-6223(00)00045-2
- Y. Huang, E. Ma, and G. Zhao, Thermal and structure analysis on reaction mechanisms during the preparation of activated carbon fibers by KOH activation from liquefied wood-based fibers, Ind. Crops Prod., 69, 447-455 (2015). https://doi.org/10.1016/j.indcrop.2015.03.002
- M. S. Park, S. Cho, E. Jeong, and Y. S. Lee, Physico-chemical and electrochemical properties of pitch-based high crystallinity cokes used as electrode material for electric double layer capacitor, J. Ind. Eng. Chem., 23, 27-32 (2015). https://doi.org/10.1016/j.jiec.2014.07.038
- J. H. Kim, D. Lee, T. S. Bae, and Y. S. Lee, The electrochemical enzymatic glucose biosensor based on mesoporous carbon fibers activated by potassium carbonate, J. Ind. Eng. Chem., 25, 192-198 (2015). https://doi.org/10.1016/j.jiec.2014.10.034
- J. B. Condon, Surface Area and Porosity Determinations by Phsisorption: Measurements and theory. 1st ed., 11-18, Elsevier science, Oxford, UK (2006).
- J. G. Kim, C. H. Chung, and Y. S. Lee, The effect of crystallization by heat treatment on electromagnetic interference shielding efficiency of carbon fibers, Appl. Chem. Eng., 22, 138-143 (2011).
- E. R. Thomas, D. Hulicova-Jurcakova, Z. Zhu, and G. Q. Lu, Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors, Electrochem. Commun., 10, 1594-1597 (2008). https://doi.org/10.1016/j.elecom.2008.08.022
- K. L. Yang, S. Yiacoumi, and C. Tsouris, Electrosorption capacitance of nanostructured carbon aerogel obtained by cyclic voltammetry, J. Electroanal. Chem., 540, 159-167 (2003). https://doi.org/10.1016/S0022-0728(02)01308-6
- D. Lee, J. Y. Jung, M. S. Park, and Y. S. Lee, Preparation of novolac-type phenol-based activated carbon with a hierarchical pore structure and its electric double-layer capacitor performance, Carbon lett., 15, 192-197 (2014). https://doi.org/10.5714/CL.2014.15.3.192
- V. Gupta and N. Miura, Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors, Electrochim. Acta., 52, 1721-1726 (2006). https://doi.org/10.1016/j.electacta.2006.01.074
- M. Ramani, B. S. Haran, R. E. White, and B. N. Popov, Synthesis and characterization of hydrous ruthenium oxide-carbon supercapacitors, J. Electrochem. Soc., 148, A374-A380 (2001). https://doi.org/10.1149/1.1357172
Cited by
- Effect of E-beam Radiation with Acid Drenching on Surface Properties of Pitch-based Carbon Fibers vol.27, pp.3, 2016, https://doi.org/10.14478/ace.2016.1042
- 리튬이온전지용 화학적 활성화로 제조된 석유계 피치 음극소재의 전기화학적 특성 vol.55, pp.3, 2017, https://doi.org/10.9713/kcer.2017.55.3.307
- 열처리 온도에 따른 열분해 연료유 내 휘발유분 및 잔류 중질유분의 구조 분석 vol.30, pp.3, 2015, https://doi.org/10.14478/ace.2019.1010
- Surface functionalization methodologies on activated carbons and their benzene adsorption vol.31, pp.3, 2021, https://doi.org/10.1007/s42823-020-00170-w