DOI QR코드

DOI QR Code

Enhancement of Nitrate Removal Ability in Aqueous Phase Using Ulmus davidiana Bark for Preventing Eutrophication

부영양화 방지를 위하여 느릅나무 수피를 활용한 수중에서 질산성질소의 제거능 향상

  • Choi, Suk Soon (Department of Biological and Environmental Engineering, Semyung University) ;
  • Choi, Jung Hoon (Department of Biological and Environmental Engineering, Semyung University) ;
  • Kim, Min-Ji (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Lee, Young-Seak (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Ha, Jeong Hyub (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Cha, Hyung Joon (Department of Chemical Engineering, Pohang University of Science and Technology)
  • 최석순 (세명대학교 바이오환경공학과) ;
  • 최정훈 (세명대학교 바이오환경공학과) ;
  • 김민지 (충남대학교 바이오응용화학과) ;
  • 이영석 (충남대학교 바이오응용화학과) ;
  • 하정협 (포항공과대학교 화학공학과) ;
  • 차형준 (포항공과대학교 화학공학과)
  • Received : 2015.08.11
  • Accepted : 2015.08.19
  • Published : 2015.10.10

Abstract

In the present work, the improvement of nitrate removal ability was investigated to resolve a eutrophication problem by using Ulmus davidiana (U. davidiana) bark generated from Gangwon province. When the initial pH of aqueous solution was adjusted to 3.5 in batch experiments, the removal efficiencies for 10 and 20 mg/L nitrate increased up to 43 and 37%, respectively. In addition, when U. davidiana bark of 1.0 g/100 mL was used for 8 h, the removal efficiency for 20 mg/L nitrate was 68%. Moreover, when reforming reaction of U. davidiana bark was performed under oxyfluorination conditions, the optimal ratio of partial pressure between fluorine and oxygen was 1 : 9 for an enhanced nitrate adsorption amount. When reformed U. davidiana bark was used for 8 h operation under the optimal oxyfluorination condition, removal efficiencies for 10, 20 and 40 mg/L nitrate were found to be 96, 95 and 59%, respectively. Collectively, these results suggest that our water treatment technology can be effectively utilized to treat high concentrations of nitrate in water bodies.

본 연구에서는 부영양화 문제를 해결하기 위하여 강원 지역에서 발생되는 느릅나무 수피를 사용하여 질산성질소 제거능 향상에 대하여 고찰하였다. 회분식 실험에 의하여 수용액의 초기 pH가 3.5로 조절되었을 때, 10, 20 mg/L 질산성질소의 제거효율은 각각 43, 37%까지 증가하였다. 또한, 1.0 g/100 mL 느릅나무 수피를 8 h 사용하였을 때, 20 mg/L 질산성질소 제거효율은 68%를 나타내었다. 그리고 함산소불화 조건에서 느릅나무 수피의 개질 반응이 수행되었을때, 질산성질소 흡착능 향상을 위한 최적의 불소와 산소 분압비가 1 : 9임을 도출하였다. 최적의 함산소불화 조건에서 개질된 느릅나무 수피를 사용하여 8 h 운전이 이루어졌을 때, 10, 20, 40 mg/L 질산성질소 제거효율은 각각 96, 95, 59%를 나타내었다. 따라서, 이러한 결과들은 수체에 함유된 고농도 질산성질소를 효과적으로 처리하는 수처리 기술로 사용될 수 있을 것이다.

Keywords

References

  1. J. Y. Jeong, J. H. Park, W. H. Choi, and J. Y. Park, Continuous removal of nitrate and coliform using bipolar ZVI packed bed electrolytic cell, J. Kor. Soi. Water and Wastewater, 25(5), 651-658 (2011).
  2. P. Loganathan, S. Vignewaran, and J. Kandasamy, Enhanced removal of nitrate from using surface modification of adsorbents-A review, J. Environ. Manage., 131, 363-374 (2013). https://doi.org/10.1016/j.jenvman.2013.09.034
  3. C. Duncan, H. Li, R. Dykhuizen, R. Frazer, P. Johnson, G. MacKnight, L. Smith, K. Lamza, H. McKenzie, L. Batt, D. Kelly, M. Golden, N. Benjamin, and C. Leifert, Protection against oral and gastrointestinal disease: Importance of dietary nitrate intake, oral nitrate reduction and enterosalivary nitrate circulation, Comp. Biochem. Physiol., 118A(4), 939-948 (1997).
  4. K. O. Choi, S. J. Seo, and S. Ko, Nitrate nitrogen reduction technology for safe groundwater drinking, Food Eng. Prog., 18(1), 36-41 (2014). https://doi.org/10.13050/foodengprog.2014.18.1.36
  5. P. M. Ayyasamy, K. Shanthi, P. Lakshmanaperumalsamy, S. J. Lee, N. C. Choi, and D. J. Kim, Two-stage removal of nitrate from groundwater using biological and chemical treatments, J. Biosci. Bioeng., 104(2), 129-134 (2007). https://doi.org/10.1263/jbb.104.129
  6. J. Bohdziewicz, M. Bodzek, and E. Wasik, The application of reverse osmosis and nanofiltration to the removal of nitrates from groundwater, Desalination, 121, 139-147 (1999). https://doi.org/10.1016/S0011-9164(99)00015-6
  7. S. G. Lehman, M. badruzzaman, S. Adham, D. J. Roberts, and D. A Clifford, Perchlorate and nitrate treatment by ion exchange integrated with biological brine treatment, Water Res., 42, 969-976 (2008). https://doi.org/10.1016/j.watres.2007.09.011
  8. K. Kesore, F. Janowski, and V. A. Shaposhnik, Highly effective electrodialysis for selective elimination of nitrates from drinking water, J. Memb. Sci., 127, 17-24 (1997). https://doi.org/10.1016/S0376-7388(96)00282-7
  9. G. C. C. Yang and H. L. Lee, Chemical reduction of nitrate by nanosized iron: Kinetics and pathways, Water Res., 39, 884-894 (2005). https://doi.org/10.1016/j.watres.2004.11.030
  10. A. Kapoor and T. Viraraghavan, Nitrate removal from drinking water-Review, J. Environ. Eng., 123(4), 371-380 (1997). https://doi.org/10.1061/(ASCE)0733-9372(1997)123:4(371)
  11. X. Xu, B. Gao, Q. Yue, Q. Li, and Y. Wang, Nitrate adsorption by multiple biomaterial based resins: Application of pilot-scale and lab-scale products, Chem. Eng. J., 234, 397-405 (2013). https://doi.org/10.1016/j.cej.2013.08.117
  12. X. Xu, B. Gao, X. Tan, X. Zhang, Q. Yue, Y. Wang, and Q. Li, Nitrate adsorption by stratified straw resin in lab-scale columns, Chem. Eng. J., 226, 1-6 (2013). https://doi.org/10.1016/j.cej.2013.04.033
  13. H. J. Gwon, E. J. Park, J. B. Choi, J. Y. Lim, J. O. Jeong, Y. M. Shin, S. I. Jeong, J. S. Park, Y. M. Lim, Y. H. Choi, and S. S. Kim, Radiation synthesis and anti-inflammatory evaluation of polysaccharide hydrogels from Ulmus Davidiana Var. Japonica, Polymer(korea), 38(1), 69-73 (2014).
  14. M. J. Kim, M. J. Jung, S. S. Choi, and Y. S. Lee, Effect of the fluorination of activated carbons on the chromium ion adsorption, Appl. Chem. Eng., 26(1), 92-98 (2015). https://doi.org/10.14478/ace.2014.1126
  15. S. J. Gregg and K. S. W. Sing, Adsorption surface and porosity, Second ed., 195, Academy Press, London (1982).
  16. M. N. Mohamad Ibrahim, W. S. Wan Ngah, M. S Norliyana, W. R. Wan Daud, M. Rafatullah, O. Sulaiman, and R. Hashim, A novel agricultural waste adsorbent for the removal of Lead(II) ions from aqueous solution, J. Hazard. Mater., 182, 377-385 (2010). https://doi.org/10.1016/j.jhazmat.2010.06.044

Cited by

  1. Calcium Alginate의 킬레이트 결합을 이용한 수중의 질산성 질소 제거에 관한 연구 vol.33, pp.4, 2016, https://doi.org/10.12925/jkocs.2016.33.4.795
  2. Nitrate removal from water phase using Robinia pseudoacacia bark for solving eutrophication vol.36, pp.9, 2015, https://doi.org/10.1007/s11814-019-0331-x