DOI QR코드

DOI QR Code

A Study on the Synthesis of Tricyclopentadiene Using Ionic Liquid Catalysts

이온성 액체 촉매를 이용한 Tricyclopentadiene 합성에 관한 연구

  • Kim, Su-Jung (Division of Advanced material Engineering, Kongju National University) ;
  • Han, Jeongsik (Agency for Defense Development) ;
  • Jeon, Jong-Ki (Department of Chemical engineering, Kongju National University) ;
  • Yim, Jin-Heong (Division of Advanced material Engineering, Kongju National University)
  • Received : 2015.08.05
  • Accepted : 2015.09.01
  • Published : 2015.10.10

Abstract

Tricyclopentadiene (TCPD) as a next generation high density fuel was synthesized by Diels-Alder oligomerization reaction of DCPD. TCPD was prepared by ionic liquid (IL) catalysts with combination of cationic and anionic precursors. Two kinds of anionic precursors such as copper(I) chloride (CuCl) and iron(III) chloride ($FeCl_3$) and cationic precursors such as triethylamine hydrochloride (TEAC) and 1-butyl-3-methylimidazolium chloride (BMIC) were used. The preparation of TCPD using IL catalyst was superior to that using Diels-Alder reaction in terms of DCPD conversion and TCPD yield. In addition, TCPD yield was correlated with Lewis acidity by changing the ratio of anionic and cationic precursors. The TCPD yield was higher when using CuCl as anionic precursor than that of using $FeCl_3$. Control of Lewis acidity by changing the molar ratio of anionic and cationic precursors could further improve TCPD yield as well.

차세대 고밀도 연료인 tricyclopentadiene (TCPD)는 dicyclopentadiene (DCPD)를 Diels-Alder 소중합 반응을 통하여 제조하여 왔다. 이에 본 연구에서는 다양한 음이온 전구체와 양이온 전구체의 조합으로 만들어진 이온성 액체 촉매를 이용한 tricyclopentadiene (TCPD) 합성에 관한 연구를 수행하였다. 본 연구에 사용된 2가지 음이온 전구체는 copper(I) chloride (CuCl), iron(III) chloride ($FeCl_3$)이며 양이온 전구체는 triethylamine hydrochloride (TEAC), 1-butyl-3-methylimidazolium chloride (BMIC)이다. 이온성 액체 촉매의 소중합을 통한 TCPD의 제조는 기존 Diels-Alder 반응보다 DCPD의 전환율과 TCPD의 수율 측면에서 우수하였다. 또한, 음이온/양이온 전구체의 조합으로 제조된 이온성 액체 촉매의 산도와 TCPD 수율과의 상관관계가 있었다. 이온성 액체 촉매의 루이스 산도가 낮은 음이온 전구체로 CuCl를 이용하였을 때가 $FeCl_3$를 사용하였을 때보다 TCPD 수율이 좋았다. $FeCl_3$를 음이온 전구체로 하고 양이온 전구체로 BMIC를 사용하여 두 전구체의 몰 비를 조절하여 루이스 산도를 낮추면 TCPD 수율을 증가시킬 수 있었다.

Keywords

References

  1. H. S. Chung, C. S. H. Chen, R. A. Kremer, and J. R. Boulton, Recent Developments in High-Energy Density Liquid Hydrocarbon Fuels, Energy Fuels, 13, 641-649 (1999). https://doi.org/10.1021/ef980195k
  2. T. Edward, Liquid Fuels and Propellants for Aerospace Propulsion: 1903-200, J. of PROP. & POW., 19, 1089-1107 (2003). https://doi.org/10.2514/2.6946
  3. Z. Xiong, Z. Mi, and X. Zhang, Study on the oligomerization of cyclopentadiene and dicyclopentadiene to tricyclopentadiene through Diels-Alder reaction, React. Kinet. Catal. Lett., 85, 89-97 (2005). https://doi.org/10.1007/s11144-005-0247-9
  4. I. Palmova, J. Kose, J. Schongut, M. Marek, and K. Stepanek, Experimental and modeling studies of oligomerization and copolymerization of dicyclopentadiene, Chem. Eng. Sci., 56, 927-935 (2001). https://doi.org/10.1016/S0009-2509(00)00307-9
  5. Y. Li, J.-J. Zou, X. Zhang, L. Wang, and Z. Mi, Product distribution of tricyclopentadiene from cycloaddition of dicyclopentadiene and cyclopentadiene: A theoretical and experimental study, Fuel, 89, 2522-2527 (2010). https://doi.org/10.1016/j.fuel.2009.11.020
  6. L. Wang, X. Zhang, J.-J. Zou, H. Han, Y. Li, and L. Wang, Acid-Catalyzed Isomerization of Tetrahydrotricyclopentadiene: Synthesis of High-Energy-Density Liquid Fuel, Energy Fuels, 23, 2383-2388 (2009). https://doi.org/10.1021/ef801139h
  7. D. H. Kim, J. S. Han, J.-K. Jeon, and J.-H. Yim, A Study on the Reaction Pathway of Isomerization of Tetrahydrotricyclopentadiene Using Ionic Liquid Catalyst, Appl. Chem. Eng., 26(3), 366-371 (2015). https://doi.org/10.14478/ace.2015.1054
  8. L. Wang, J.-J. Zou, X. Zhang, and L. Wang, Rearrangement of Tetrahydrotricyclopentadiene Using Acidic Ionic Liquid: Synthesis of Diamondoid Fuel, Energy Fuels, 25, 1342-1347 (2011). https://doi.org/10.1021/ef101702r
  9. M. Y. Huang, J. C. Wu, F. S. Shieu, and J. J. Lin, Isomerization of exo-tetrahydrodicyclopentadiene to adamantane using an acidity-adjustable chloroaluminate ionic liquid, Catal. Commun, 10, 1747-1751 (2009). https://doi.org/10.1016/j.catcom.2009.05.030
  10. V. I. Pavulescu and C. Hardacre, Catalysis in Ionic Liquids, Chem. Rev., 107, 2615-2665 (2007). https://doi.org/10.1021/cr050948h
  11. H. J. Lee, J. S. Lee, and H. S. Kim, Applications of Ionic Liquids: The State of Arts, Appl. Chem. Eng., 21(2), 129-136 (2010).
  12. K. N. Marsh, A. Deer, A. C. Wu, E. Tran, and A. Klamt, Room Temperature Ionic Liquids as Replacements for Conventional Solvents-A Review, Korean J. Chem. Eng., 19(3), 357-362 (2002). https://doi.org/10.1007/BF02697140
  13. K. Yoo, V. V. Namboodiri, R. S. Varma, and P. G. Smirniotis, Ionic liquid-catalyzed alkylation of isobutane with 2-butene, J. Catal., 222, 511-519 (2004). https://doi.org/10.1016/j.jcat.2003.11.018
  14. C.-Z. Qial, Y.-F. Zhang, J.-C. Zhang, and C.-Y. Li, Activity and stability investigation of [BMIM][$AlCl_4$] ionic liquid as catalyst for alkylation of benzene with 1-dodecene, Appl. Catal. A: General., 276, 61-66 (2004). https://doi.org/10.1016/j.apcata.2004.07.021
  15. P. Wasserscheid and M. Eichmann, Selective dimerisation of 1-butene in biphasic mode using buffered chloroaluminate ionic liquid solvents-design and application of a continuous loop reactor, Catal. Today, 66, 309-316 (2001). https://doi.org/10.1016/S0920-5861(00)00617-9
  16. D. Thiele and R. F. de Souza, The role of aluminum species in biphasic butene dimerization catalyzed by nickel complexes, J. Mol. Catal. A: Chemical, 264, 293-298 (2007). https://doi.org/10.1016/j.molcata.2006.09.026
  17. H. W. Bae, J.-S. Han, S. Jung, M. Cheong, H. S. Kim, and J. S. Lee, Polymer-supported chloroaluminate catalysts for the Diels-Alder reaction of cyclopentadiene with methyl methacrylate, Appl. Catal. A: General, 331, 34-38 (2007). https://doi.org/10.1016/j.apcata.2007.07.023
  18. M. J. Earle, P. B. McCormac, and K. R. Seddon, Diels-Alder reactions in ionic liquids. A safe recyclable alternative to lithium perchlorate-diethyl ether mixtures, Green Chem., 1, 23-25 (1991).
  19. P. A. Suarez, J. E. Dullius, S. Einloft, R. F. Souza, and J. Dupont, The use of new ionic liquids in two-phase catalytic hydrogenation reaction by rhodium complexes, Polyhedron, 7, 1217-1219 (1996).
  20. Y. L. Yang and Y. Kou, Determination of the Lewis acidity of ionic liquids by means of an IR spectroscopic probe, Chem. Comm., Doi: 10.1039/b311615h.
  21. S. G. Kim, J. S. Han, J.-K. Jeon, and, J.-H. Yim, Ionic liquid-catalyzed isomerization of tetrahydrotricyclopentadiene using various chloroaluminate complexes, Fuel, 137, 109-114 (2014). https://doi.org/10.1016/j.fuel.2014.07.066