DOI QR코드

DOI QR Code

Physical and Chemical Properties of (Sr,Mg)FeO3-y System Heat-treated in N2

N2 분위기에서 열처리한 (Sr,Mg)FeO3-y계의 물리 및 화학적 성질

  • Lee, Eun-Seok (Department of Applied Chemistry, Cheongju University)
  • Received : 2015.08.13
  • Accepted : 2015.09.21
  • Published : 2015.10.01

Abstract

The perovskite solid solutions of the $Sr_{1-x}Mg_xFe{^{3+}}_{1-{\tau}}Fe{^{4+}}_{\tau}O_{3-y}$ system (x=0.0, 0.1, 0.2, and 0.3) were synthesized in $N_2$ at $1,150^{\circ}C$. X-ray powder diffraction study assured that all the four samples had cubic symmetries(SM-0: $3.865{\AA}$, SM-1: $3.849{\AA}$, SM-2: $3.833{\AA}$, and SM-3: $3.820{\AA}$) and that the lattice volumes decreased steadily from $57.7{\AA}^3$ to $55.7{\AA}^3$ with x values. The nonstoichiometric chemical formulas were determined by Mohr salt analysis and with the increase of x values the amounts of $Fe^{4+}$ ion and oxygen were decreased simultaneously. Thermal analysis showed that SM-0 started to lose its oxygen at $450^{\circ}C$ and SM-1, Sm-2, and SM-3 began to lose their oxygen at around $350{\sim}400^{\circ}C$. SM-0 showed almost reversible weight change in the cooling process. All the samples exhibited semiconducting behaviors in the temperature range of $10{\sim}400^{\circ}C$. Conductivities of the 4 samples were decreased in the order of SM-0, SM-1, SM-2, and SM-3 at constant temperature. The activation energies of the conductions were in the range of 0.176 eV~0.244 eV.

Keywords

References

  1. V. V. Kharton, V. N. Tikhonovich, L. Shuangbao, E. N. Naumovich, A. V. Kovalevsky, A. P. Viskup, I. A. Bashmakov, and A. A. Yaremchenko, J. Electrochem. Soc., 145, 1363 (1998). [DOI: http://dx.doi.org/10.1149/1.1838467]
  2. Y. Takeda, C. Okazoe, N. Imanishi, O. Yamamoto, S. Kawasaki, and M. Takano, J. Ceramic Soc. of Japan, 106, 759 (1998). [DOI: http://dx.doi.org/10.2109/jcersj.106.759]
  3. H. Iwahara, T. Yajima, T. Hibino, and H. Ushida, J. Electrochem. Soc., 140, 1687 (1993). [DOI: http://dx.doi.org/10.1149/1.2221624
  4. H. Ullmann, N. Trofimenko, F. Tietz, D. Stover, and A. Ahmad-Khanlou, Solid State Ionics, 138, 79 (2000). [DOI: http://dx.doi.org/10.1016/S0167-2738(00)00770-0]
  5. E. S. Lee, Bull. Kor. Chem. Soc., 25, 859 (2004). [DOI: http://dx.doi.org/10.5012/bkcs.2004.25.6.859]
  6. H. Yamamura, H. Haneda, S. I. Shirasaki, and K. Takada, J. Solid State Chem., 36, 1 (1981). [DOI: http://dx.doi.org/10.1016/0022-4596(81)90185-7]
  7. M. Takano, J. Kawachi, N. Nakanishi, and Y. Dakeda, J. Solid State Chem., 39, 75 (1981). [DOI: http://dx.doi.org/10.1016/0022-4596(81)90304-2]
  8. L. B. Valdes, Proc. I. R. E., 42, 420 (1954). [DOI: http://dx.doi.org/10.1109/JRPROC.1954.274680]
  9. E. S. Lee, Bull. Kor. Chem. Soc., 25, 859 (2004). [DOI: http://dx.doi.org/10.5012/bkcs.2004.25.6.859]
  10. E. S. Lee and J. C. Hag, Trans. Electr. Electron. Mater., 13, 39 (2012). [DOI: http://dx.doi.org/10.4313/TEEM.2012.13.1.39]
  11. J. B. Macchesney, R. C. Sherwood, and J. F. Potter, J. Chem. Phys., 43, 1907 (1965). [DOI: http://dx.doi.org/10.1063/1.1697052]
  12. E. S. Lee and J. D. Lee, J. Kor. Ind. Eng. Chem., 13, 315 (2002).
  13. A. Wattiaux, J. C. Grenier, M. Porchard, and P. Hagenmuller, J. Electrochem., 134, 1714 (1987). [DOI: http://dx.doi.org/10.1149/1.2100741]
  14. E. S. Lee, J. Kor. Ind. Eng. Chem., 4, 73 (1998).